Advertisement

Market Blended Insight: Modeling Propensity to Buy with the Semantic Web

  • Manuel Salvadores
  • Landong Zuo
  • SM Hazzaz Imtiaz
  • John Darlington
  • Nicholas Gibbins
  • Nigel R Shadbolt
  • James Dobree
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5318)

Abstract

Market Blended Insight (MBI) is a project with a clear objective of making a significant performance improvement in UK business to business (B2B) marketing activities in the 5-7 year timeframe. The web has created a rapid expansion of content that can be harnessed by recent advances in Semantic Web technologies and applied to both Media industry provision and company utilization of exploitable business data and content. The project plans to aggregate a broad range of business information, providing unparalleled insight into UK business activity and develop rich semantic search and navigation tools to allow any business to ’place their sales proposition in front of a prospective buyer’ confident of the fact that the recipient has a propensity to buy.

Keywords

Resource Description Framework Social Network Service London Borough Consortium Member Simple Knowledge Organization System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    AKT research programme (accessed on 04/2008), http://www.aktors.org
  2. 2.
  3. 3.
    The architects journal (accessed on 04/2008), www.ajspecification.com
  4. 4.
    (accessed on 02/2008), http://incubator.apache.org/uima/
  5. 5.
    (accessed on 05/2008), http://www.mycamden.co.uk/
  6. 6.
    Java server faces (accessed on 05/2008), http://java.sun.com/javaee/javaserverfaces/
  7. 7.
    Ordenance survey point of interest database (accessed on 01/2008), http://www.ordnancesurvey.co.uk/oswebsite/products/pointsofinterest/
  8. 8.
    Pdfbox - java pdf library (accessed on 04/2008), www.pdfbox.org
  9. 9.
    PH megafile (accessed on 04/2008), http://www.phgroup.com/mfmap.html
  10. 10.
    The prefuse visualization toolkit (accessed on 05/2008), http://prefuse.org/
  11. 11.
    Resource description framework (RDF) (accessed on 04/2008), http://www.w3.org/rdf/
  12. 12.
    Simple knowledge organization system (SKOS) (accessed on 04/2008), http://www.w3.org/2004/02/skos/
  13. 13.
    SPARQL query language for rdf (accessed on 04/2008), http://www.w3.org/tr/rdf-sparql-query/
  14. 14.
    SWAD europe deliverable 12.1.1: Semantic web applications - analysis and selection (accessed on 05/2008), http://www.w3.org/2001/sw/europe/reports/
  15. 15.
    The UK standard industrial classification of economic activities uk sic(92) (accessed on 04/2008), http://www.statistics.gov.uk/
  16. 16.
    Unstructured data: Attacking a myth, 9/5/2007, by stephen swoyer (accessed on 04/2008), http://www.tdwi.org/news/display.aspx?id=8577
  17. 17.
    Web ontology language (OWL) (accessed on 04/2008), http://www.w3.org/2004/owl/
  18. 18.
    WEBSPHINX: A personal, customizable web crawler (accessed on 04/2008), http://www.cs.cmu.edu/~rcm/websphinx/
  19. 19.
  20. 20.
    Alani, H., Dupplaw, D., Sheridan, J., O’Hara, K., Darlington, J., Shadbolt, N., Tullo, C.: Unlocking the potential of public sector information with semantic web technology. In: ISWC/ASWC, pp. 708–721 (2007)Google Scholar
  21. 21.
    Carroll, J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena: Implementing the semantic web recommendations. Technical Report HPL-2003 (2003)Google Scholar
  22. 22.
    Ciravegna, F., Chapman, S., Dingli, A., Wilks, Y.: Learning to harvest information for the semantic web (2004)Google Scholar
  23. 23.
    Cunningham, H.: Jape – a java annotation patterns engine. Technical Report, Department of Computer Science, University of Sheffield (1999)Google Scholar
  24. 24.
    Cunningham, H., Maynard, D., Tablan, V., Ursu, C., Bontcheva, K.: Developing language processing components with gate (2001)Google Scholar
  25. 25.
    Ehrig, M., Maedche, A.: Ontology-focused crawling of web documents. In: SAC 2003: Proceedings of the 2003 ACM symposium on Applied computing, pp. 1174–1178. ACM, New York (2003)Google Scholar
  26. 26.
    Sheth, A.P., Verma, K., Sivashanmugam, K., Miller, J.A.: Framework for semantic web process composition. International Journal of Electronic Commerce 9 (2005)Google Scholar
  27. 27.
    Kemper, A., Wiesner, C.: Building scalable electronic market places using hyperquery-based distributed query processing. World Wide Web 8(1), 27–60 (2005)CrossRefGoogle Scholar
  28. 28.
    Leonard, T., Glaser, H.: Large scale acquisition and maintenance from the web without source access. In: Handschuh, S., Dieng-Kuntz, R., Staab, S. (eds.) Workshop 4, Knowledge Markup and Semantic Annotation, K-CAP 2001, October 2001, pp. 97–101 (2001)Google Scholar
  29. 29.
    Mena, E., Kashyap, V., Sheth, A.P., Illarramendi, A.: OBSERVER: An approach for query processing in global information systems based on interoperation across pre-existing ontologies. In: Conference on Cooperative Information Systems, pp. 14–25 (1996)Google Scholar
  30. 30.
    Miller, R.C., Bharat, K.: SPHINX: A framework for creating personal, site-specific web crawlers. Computer Networks 30(1-7), 119–130 (1998)Google Scholar
  31. 31.
    Noy, N.F., Musen, M.A.: PROMPT: Algorithm and tool for automated ontology merging and alignment. In: AAAI/IAAI, pp. 450–455 (2000)Google Scholar
  32. 32.
    O’Connell, B.: Building an information on demand enterprise that integrates both operational and strategic business intelligence. In: ICEC 2007: Proceedings of the ninth international conference on Electronic commerce, pp. 85–86. ACM, New York (2007)Google Scholar
  33. 33.
    Porter, M.E.: Competitive Strategy: Techniques for Analyzing Industries and Competitors. Simon and Schuster (1980)Google Scholar
  34. 34.
    Specia, L., Motta, E.: A hybrid approach for relation extraction aimed at the semantic web. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds.) FQAS 2006. LNCS (LNAI), vol. 4027, pp. 564–576. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  35. 35.
    Thompson, P.: Dynamic integration of distributed semantic services: Infrastructure for process queries and question answering. In: HLT-NAACL (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Manuel Salvadores
    • 1
  • Landong Zuo
    • 1
  • SM Hazzaz Imtiaz
    • 1
  • John Darlington
    • 1
  • Nicholas Gibbins
    • 1
  • Nigel R Shadbolt
    • 1
  • James Dobree
    • 2
  1. 1.Intelligence, Agents, Multimedia (IAM) Group School of Electronics and Computer ScienceUniversity of SouthamptonUK
  2. 2.ProspectSpace LtdUK

Personalised recommendations