Advertisement

Identifying Potentially Important Concepts and Relations in an Ontology

  • Gang Wu
  • Juanzi Li
  • Ling Feng
  • Kehong Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5318)

Abstract

More and more ontologies have been published and used widely on the web. In order to make good use of an ontology, especially a new and complex ontology, we need methods to help understand it first. Identifying potentially important concepts and relations in an ontology is an intuitive but challenging method. In this paper, we first define four features for potentially important concepts and relation from the ontological structural point of view. Then a simple yet effective Concept-And-Relation-Ranking (CARRank) algorithm is proposed to simultaneously rank the importance of concepts and relations. Different from the traditional ranking methods, the importance of concepts and the weights of relations reinforce one another in CARRank in an iterative manner. Such an iterative process is proved to be convergent both in principle and by experiments. Our experimental results show that CARRank has a similar convergent speed as the PageRank-like algorithms, but a more reasonable ranking result.

References

  1. 1.
    Alani, H., Brewster, C., Shadbolt, N.: Ranking ontologies with aktiverank. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Alford, R.: Using FOAF and OWL (July 2005), http://www.mindswap.org/2005/foaf_cleaner/
  3. 3.
    Balmin, A., Hristidis, V., Papakonstantinou, Y.: Objectrank: Authority-based keyword search in databases. In: VLDB, pp. 564–575 (2004)Google Scholar
  4. 4.
    Bontas, E.P., Mochol, M.: Towards a cost estimation model for ontology engineering. In: Berliner XML Tage, pp. 153–160 (2005)Google Scholar
  5. 5.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks 30(1-7), 107–117 (1998)Google Scholar
  6. 6.
    Buitelaar, P., Eigner, T., Declerck, T.: Ontoselect: A dynamic ontology library with support for ontology selection. In: The Demo Session at the ISWC (2004)Google Scholar
  7. 7.
    d’Entremont, T., Storey, M.-A.: Using a degree-of-interest model for adaptive visualizations in protégé. In: 9th International Protégé Conference (2006)Google Scholar
  8. 8.
    Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and Ranking Knowledge on the Semantic Web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156–170. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Ernst, N.A., Storey, M.-A., Allen, P.: Cognitive support for ontology modeling. Int. J. Hum.-Comput. Stud. 62(5), 553–577 (2005)CrossRefGoogle Scholar
  10. 10.
    Fogaras, D.: Where to start browsing the web? In: Böhme, T., Heyer, G., Unger, H. (eds.) IICS 2003. LNCS, vol. 2877, pp. 65–79. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Gruber, T.R.: What is an ontology (December 2001)Google Scholar
  12. 12.
    James, W.: The principles of psychology. Harvard (1890)Google Scholar
  13. 13.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Leighton, H.V., Srivastava, J.: First 20 precision among world wide web search services (search engines). Journal of the American Society for Information Science 50(10), 870–881 (1999)CrossRefGoogle Scholar
  15. 15.
    Mei, J., Boley, H.: Interpreting swrl rules in rdf graphs. Electr. Notes Theor. Comput. Sci. 151(2), 53–69 (2006)CrossRefGoogle Scholar
  16. 16.
    Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., Swartout, W.R.: Enabling technology for knowledge sharing. AI Mag. 12(3), 36–56 (1991)Google Scholar
  17. 17.
    Nie, Z., Zhang, Y., Wen, J.-R., Ma, W.-Y.: Object-level ranking: bringing order to web objects. In: WWW, pp. 567–574 (2005)Google Scholar
  18. 18.
    Patel, C., Supekar, K., Lee, Y., Park, E.K.: Ontokhoj: a semantic web portal for ontology searching, ranking and classification. In: WIDM, pp. 58–61 (2003)Google Scholar
  19. 19.
    Sabou, M., Lopez, V., Motta, E.: Ontology selection for the real semantic web: How to cover the queens birthday dinner? In: Managing Knowledge in a World of Networks. LNCS, pp. 96–111. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Tu, K., Xiong, M., Zhang, L., Zhu, H., Zhang, J., Yu, Y.: Towards imaging large-scale ontologies for quick understanding and analysis. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    W3C. Resource Description Framework (RDF): Concepts and Abstract Syntax (2004), http://www.w3.org/TR/rdf-concepts/
  22. 22.
    W3C. SWRL: A Semantic Web Rule Language Combining OWL and RuleML (2004), http://www.w3.org/Submission/SWRL/
  23. 23.
    Wang, T.D., Parsia, B., Hendler, J.: A survey of the web ontology landscape. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)Google Scholar
  24. 24.
    Wu, G.: Understanding an ontology by ranking its concepts and relations. Technical report, Tsinghua University (January 2008), http://166.111.68.66/persons/gangwu/publications/kegtr-carrank.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gang Wu
    • 1
    • 2
  • Juanzi Li
    • 1
  • Ling Feng
    • 1
  • Kehong Wang
    • 1
  1. 1.Department of Computer ScienceTsinghua UniversityBeijingP.R. China
  2. 2.Department of Computer ScienceSoutheastern UniversityNanjingP.R. China

Personalised recommendations