A Kernel Revision Operator for Terminologies — Algorithms and Evaluation

  • Guilin Qi
  • Peter Haase
  • Zhisheng Huang
  • Qiu Ji
  • Jeff Z. Pan
  • Johanna Völker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5318)

Abstract

Revision of a description logic-based ontology deals with the problem of incorporating newly received information consistently. In this paper, we propose a general operator for revising terminologies in description logic-based ontologies. Our revision operator relies on a reformulation of the kernel contraction operator in belief revision. We first define our revision operator for terminologies and show that it satisfies some desirable logical properties. Second, two algorithms are developed to instantiate the revision operator. Since in general, these two algorithms are computationally too hard, we propose a third algorithm as a more efficient alternative. We implemented the algorithms and provide evaluation results on their efficiency, effectiveness and meaningfulness in the context of two application scenarios: Incremental ontology learning and mapping revision.

References

  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. J. Symb. Log. 50(2), 510–530 (1985)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic EL+. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 52–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Castano, S., Ferrara, A., Montanelli, S.: Matching ontologies in open networked systems: Techniques and applications. pp. 25–63 (2006)Google Scholar
  4. 4.
    Falappa, M.A., Fermé, E.L., Kern-Isberner, G.: On the logic of theory change: Relations between incision and selection functions. In: Proc. of ECAI 2006, pp. 402–406 (2006)Google Scholar
  5. 5.
    Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies, negations and changes in ontologies. In: Proc. of AAAI 2006, pp. 1295–1300 (2006)Google Scholar
  6. 6.
    Flouris, G., Plexousakis, D., Antoniou, G.: On applying the AGM theory to DLs and OWL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 216–231. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Haase, P., Stojanovic, L.: Consistent evolution of OWL ontologies. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 182–197. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for handling inconsistency in changing ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–367. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Haase, P., Völker, J.: Ontology learning and reasoning - dealing with uncertainty and inconsistency. In: Proc. of URSW 2005, pp. 45–55 (2005)Google Scholar
  10. 10.
    Hansson, S.O.: Kernel contraction. Journal of Symbolic Logic 59(3), 845–859 (1994)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hansson, S.O.: A Textbook of Belief Dynamics: Theory Change and Database Updating. Kluwer Academic Publishers, Dordrecht (1999)CrossRefMATHGoogle Scholar
  12. 12.
    Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 267–280. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change. Artificial Intelligence 52(3), 263–294 (1992)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Meilicke, C., Stuckenschmidt, H.: Applying logical constraints to ontology matching. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 99–113. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Qi, G., Hunter, A.: Measuring incoherence in description logic-based ontologies. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 381–394. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Qi, G., Liu, W., Bell, D.A.: Knowledge base revision in description logics. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 386–398. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ribeiro, M.M., Wassermann, R.: Base revision in description logics - preliminary results. In: Proc. of IWOD 2007, pp. 69–82 (2007)Google Scholar
  19. 19.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Proc. of IJCAI 2003, pp. 355–362 (2003)Google Scholar
  20. 20.
    Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent terminologies. Journal of Automated Reasoning 39(3), 317–349 (2007)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Wassermann, R.: An algorithm for belief revision. In: Proc. of KR 2000, pp. 345–352 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guilin Qi
    • 1
  • Peter Haase
    • 1
  • Zhisheng Huang
    • 2
  • Qiu Ji
    • 1
  • Jeff Z. Pan
    • 3
  • Johanna Völker
    • 1
  1. 1.Institute AIFBUniversity of KarlsruheGermany
  2. 2.Department of Mathematics and Computer ScienceVrije University AmsterdamGermany
  3. 3.Department of Computing ScienceThe University of AberdeenUK

Personalised recommendations