Advertisement

Statistical Learning for Inductive Query Answering on OWL Ontologies

  • Nicola Fanizzi
  • Claudia d’Amato
  • Floriana Esposito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5318)

Abstract

A novel family of parametric language-independent kernel functions defined for individuals within ontologies is presented. They are easily integrated with efficient statistical learning methods for inducing linear classifiers that offer an alternative way to perform classification w.r.t. deductive reasoning. A method for adapting the parameters of the kernel to the knowledge base through stochastic optimization is also proposed. This enables the exploitation of statistical learning in a variety of tasks where an inductive approach may bridge the gaps of the standard methods due the inherent incompleteness of the knowledge bases. In this work, a system integrating the kernels has been tested in experiments on approximate query answering with real ontologies collected from standard repositories.

Keywords

Kernel Function Semantic Similarity Description Logic Kernel Method Deductive Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  2. 2.
    Buitelaar, P., Cimiano, P., Magnini, B. (eds.): Ontology Learning from Text: Methods, Evaluation and Applications. IOS Press, Amsterdam (2005)Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  4. 4.
    Hitzler, P., Vrandec̆ić, D.: Resolution-based approximate reasoning for OWL DL. In: Gil, Y., Motta, E., Benjamins, V., Musen, M.A. (eds.) Proceedings of the 4th International Semantic Web Conference, ISWC 2005, Galway, Ireland. LNCS, vol. 3279, pp. 383–397. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the Semantic Web. Applied Intelligence 26, 139–159 (2007)CrossRefGoogle Scholar
  6. 6.
    Lehmann, J., Hitzler, P.: Foundations of refinement operators for description logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Gärtner, T., Lloyd, J., Flach, P.: Kernels and distances for structured data. Machine Learning 57, 205–232 (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fanizzi, N., d’Amato, C., Esposito, F.: Randomized metric induction and evolutionary conceptual clustering for semantic knowledge bases. In: Silva, M., Laender, A., Baeza-Yates, R., McGuinness, D., Olsen, O., Olstad, B. (eds.) Proceedings of the ACM International Conference on Knowledge Management, CIKM 2007, Lisbon, Portugal, pp. 51–60. ACM, New York (2007)Google Scholar
  9. 9.
    d’Amato, C., Fanizzi, N., Esposito, F.: Query answering and ontology population: An inductive approach. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 288–302. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Veloso, M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 230–235 (2007)Google Scholar
  11. 11.
    Schölkopf, B., Smola, A.: Learning with Kernels. The MIT Press, Cambridge (2002)zbMATHGoogle Scholar
  12. 12.
    Fanizzi, N., d’Amato, C.: A declarative kernel for \(\mathcal{ALC}\) concept descriptions. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 322–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Fanizzi, N., d’Amato, C.: Inductive concept retrieval and query answering with semantic knowledge bases through kernel methods. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part I. LNCS (LNAI), vol. 4692, pp. 148–155. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 58–71. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Ehrig, M., Haase, P., Hefke, M., Stojanovic, N.: Similarity for ontologies - a comprehensive framework. In: Proceedings of the 13th European Conference on Information Systems, ECIS 2005 (2005)Google Scholar
  16. 16.
    Hammer, B., Hitzler, P. (eds.): Perspectives of Neural-Symbolic Integration. Studies in Computational Intelligence, vol. 77. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  17. 17.
    Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, Department of Computer Science, University of California – Santa Cruz (1999)Google Scholar
  18. 18.
    Cumby, C., Roth, D.: On kernel methods for relational learning. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the 20th International Conference on Machine Learning, ICML 2003, pp. 107–114. AAAI Press, Menlo Park (2003)Google Scholar
  19. 19.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search – The Metric Space Approach. In: Advances in database Systems. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nicola Fanizzi
    • 1
  • Claudia d’Amato
    • 1
  • Floriana Esposito
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di BariBariItaly

Personalised recommendations