On Inner and Outer Descriptions of the Steady-State Flux Cone of a Metabolic Network

  • Abdelhalim Larhlimi
  • Alexander Bockmayr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5307)

Abstract

Constraint-based approaches have proved successful in analyzing complex metabolic networks. They restrict the range of all possible behaviors that a metabolic system can display under governing constraints. The set of all possible flux distributions over a metabolic network at steady state defines a polyhedral cone, the steady-state flux cone. This cone can be analyzed using an inner description based on sets of generating vectors such as elementary flux modes or extreme pathways. Another possibility is the use of an outer description based on sets of non-negativity constraints. In this paper, we study the relationship between inner and outer descriptions of the cone. We give a generic procedure to show how inner descriptions can be computed from the outer one. Then we use this procedure to explain why, for large-scale metabolic networks, the size of the inner descriptions may be several orders of magnitude larger than that of the outer description.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heinrich, R., Schuster, S.: The Regulation of Cellular Systems. Chapman and Hall, New York (1996)CrossRefGoogle Scholar
  2. 2.
    Covert, M., Famili, I., Palsson, B.: Identifying constraints that govern cell behavior: a key to converting conceptual to computational models in biology? Biotechnol. Bioeng. 84(7), 763–772 (2003)CrossRefPubMedGoogle Scholar
  3. 3.
    Palsson, B.: The challenges of in silico biology. Nat. Biotechnol. 18(11), 1147–1150 (2000)CrossRefPubMedGoogle Scholar
  4. 4.
    Price, N., Reed, J., Palsson, B.: Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2(11), 886–897 (2004)CrossRefPubMedGoogle Scholar
  5. 5.
    Bonarius, H., Schmid, G., Tramper, J.: Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol. 15(8), 308–314 (1997)CrossRefGoogle Scholar
  6. 6.
    Kauffman, K., Prakash, P., Edwards, J.: Advances in flux balance analysis. Curr. Opin. Biotechnol. 14(5), 491–496 (2004)CrossRefGoogle Scholar
  7. 7.
    Lee, J., Gianchandani, E., Papin, J.: Flux balance analysis in the era of metabolomics. Brief. Bioinformatics 7(2), 140–150 (2006)CrossRefPubMedGoogle Scholar
  8. 8.
    Schuetz, R., Kuepfer, L., Sauer, U.: Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lee, S., Phalakornkule, C., Grossmann, I.E., Domach, M.M.: Recursive MILP model for finding all the alternate optima in LP models for metabolic networks. Comput. Chem. Eng. 24, 711–716 (2000)CrossRefGoogle Scholar
  10. 10.
    Larhlimi, A., Bockmayr, A.: A new constraint-based description of the steady-state flux cone of metabolic networks. Discrete Applied Mathematics (to appear, 2008)Google Scholar
  11. 11.
    Papin, J., Price, N., Wiback, S., Fell, D., Palsson, B.: Metabolic pathways in the post-genome era. Trends Biochem. Sci. 28(5), 250–258 (2003)CrossRefPubMedGoogle Scholar
  12. 12.
    Papin, J., Stelling, J., Price, N., Klamt, S., Schuster, S., Palsson, B.: Comparison of network-based pathway analysis methods. Trends Biotechnol. 22(8), 400–405 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    Wagner, C., Urbanczik, R.: The geometry of the flux cone of a metabolic network. Biophys. J. 89(6), 3837–3845 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)Google Scholar
  15. 15.
    Clarke, B.: Stability of complex reaction networks. In: Prigogine, I., Rice, S. (eds.) Advances in Chemical Physics, vol. 43, pp. 1–216. John Wiley & Sons, Chichester (1980)CrossRefGoogle Scholar
  16. 16.
    Schilling, C., Letscher, D., Palsson, B.: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203(3), 229–248 (2000)CrossRefPubMedGoogle Scholar
  17. 17.
    Dandekar, T., Moldenhauer, F., Bulik, S., Bertram, H., Schuster, S.: A method for classifying metabolites in topological pathway analyses based on minimization of pathway number. BioSystems 70(3), 255–270 (2003)CrossRefPubMedGoogle Scholar
  18. 18.
    Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 2(2), 165–182 (1994)CrossRefGoogle Scholar
  19. 19.
    Clarke, B.: Complete set of steady states for the general stoichiometric dynamical system. J. Chem. Phys. 75(10), 4970–4979 (1981)CrossRefGoogle Scholar
  20. 20.
    Schuster, S., Hilgetag, C., Woods, J., Fell, D.: Reaction routes in biochemical reaction systems: algebraic properties, validated calculation procedure and example from nucleotide metabolism. J. Math. Biol. 45(2), 153–181 (2002)CrossRefPubMedGoogle Scholar
  21. 21.
    Heiner, M., Koch, I., Voss, K.: Analysis and simulation of steady states in metabolic pathways with Petri nets. In: Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, CPN 2001, Aarhus University, Denmark, pp. 15–34 (2001)Google Scholar
  22. 22.
    Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I., Dandekar, T.: Structural analysis of metabolic networks: elementary flux modes, analogy to Petri nets, and application to Mycoplasma pneumoniae. In: German Conference on Bioinformatics, GCB 2000, Heidelberg, Germany, pp. 115–120. Logos Verlag (2000)Google Scholar
  23. 23.
    Klamt, S., Saez-Rodriguez, J., Lindquist, J., Simeoni, L., Gilles, E.: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 7, 56 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Klamt, S., Stelling, J.: Two approaches for metabolic pathway analysis? Trends Biotechnol. 21, 64–69 (2003)CrossRefPubMedGoogle Scholar
  25. 25.
    Palsson, B., Price, N., Papin, J.: Development of network-based pathway definitions: the need to analyze real metabolic networks. Trends Biotechnol. 21(5), 195–198 (2003)CrossRefPubMedGoogle Scholar
  26. 26.
    Gagneur, J., Klamt, S.: Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioinformatics 5, 175 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Larhlimi, A., Bockmayr, A.: A new approach to flux coupling analysis of metabolic networks. In: Berthold, M.R., Glen, R.C., Fischer, I. (eds.) CompLife 2006. LNCS (LNBI), vol. 4216, pp. 205–215. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Larhlimi, A., Bockmayr, A.: Minimal direction cuts in metabolic networks. In: Computational Life Sciences III, CompLife 2007, Utrecht, The Netherlands. American Institute of Physics Conference Series, vol. 940, pp. 73–86 (2007)Google Scholar
  29. 29.
    Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  30. 30.
    Poolman, M., Fell, D., Raines, C.: Elementary modes analysis of photosynthate metabolism in the chloroplast stroma. Eur. J. Biochem. 270(3), 430–439 (2003)CrossRefPubMedGoogle Scholar
  31. 31.
    Wiback, S., Palsson, B.: Extreme pathway analysis of human red blood cell metabolism. Biophys. J. 83(2), 808–818 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cakir, T., Tekir, D., Önsan, Z., Kutlu, U., Nielsen, J.: Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. BMC Syst. Biol. 18(1) (2007)Google Scholar
  33. 33.
    Klamt, S., Saez-Rodriguez, J., Gilles, E.: Structural and functional analysis of cellular networks with cellnetanalyzer. BMC Syst. Biol. 1, 2 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    von Kamp, A., Schuster, S.: Metatool 5. 0: fast and flexible elementary modes analysis. Bioinformatics 22(15), 1930–1931 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Abdelhalim Larhlimi
    • 1
  • Alexander Bockmayr
    • 1
  1. 1.DFG-Research Center Matheon, FB Mathematik und InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations