A Model Checking Approach to the Parameter Estimation of Biochemical Pathways

  • Robin Donaldson
  • David Gilbert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5307)


Model checking has historically been an important tool to verify models of a wide variety of systems. Typically a model has to exhibit certain properties to be classed ‘acceptable’. In this work we use model checking in a new setting; parameter estimation. We characterise the desired behaviour of a model in a temporal logic property and alter the model to make it conform to the property (determined through model checking). We have implemented a computational system called MC2(GA) which pairs a model checker with a genetic algorithm. To drive parameter estimation, the fitness of set of parameters in a model is the inverse of the distance between its actual behaviour and the desired behaviour. The model checker used is the simulation-based Monte Carlo Model Checker for Probabilistic Linear-time Temporal Logic with numerical constraints, MC2(PLTLc). Numerical constraints as well as the overall probability of the behaviour expressed in temporal logic are used to minimise the behavioural distance. We define the theory underlying our parameter estimation approach in both the stochastic and continuous worlds. We apply our approach to biochemical systems and present an illustrative example where we estimate the kinetic rate constants in a continuous model of a signalling pathway.


Nerve Growth Factor Model Check Temporal Logic Free Variable Kinetic Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolkenhauer, O.: Systems Biology: the Reincarnation of Systems Theory Applied in Biology? Briefings in Bioinformatics 2(3), 258–270 (2001)CrossRefPubMedGoogle Scholar
  2. 2.
    Kolch, W., Calder, M., Gilbert, D.: When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Lett. 579, 1891–1895 (2005)CrossRefPubMedGoogle Scholar
  3. 3.
    Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using Petri nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Vyshemirsky, V., Girolami, M.: Bayesian Ranking of Biochemical System Models. Bioinformatics 24(6), 833–839 (2008)CrossRefPubMedGoogle Scholar
  5. 5.
    Maria, G.: A Review of Algorithms and Trends in Kinetic Model Identification for Chemical and Biochemical Systems. Chem. Biochem. Eng. Q. 18(3), 195–222 (2004)Google Scholar
  6. 6.
    Donaldson, R., Gilbert, D.: A Monte Carlo Model Checker for Probabilistic LTL with Numerical Constraints. Technical report, University of Glasgow, Department of Computing Science (2008)Google Scholar
  7. 7.
    Baier, C.: On Algorithmic Verification Methods for Probabilistic Systems. Habilitation thesis, University of Mannheim (1998)Google Scholar
  8. 8.
    Brightman, F., Fell, D.: Differential feedback regulation of the mapk cascade underlies the quantitative differences in egf and ngf signalling in pc12 cells. FEBS Lett. 482, 169–174 (2000)CrossRefPubMedGoogle Scholar
  9. 9.
    Gilbert, D., Heiner, M., Rosser, S., Fulton, R., Gu, X., Trybilo, M.: A Case Study in Model-driven Synthetic Biology. In: Biologically Inspired Cooperative Computing: BICC 2008. IFIP, vol. 268, pp. 163–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Pnueli, A.: The Temporal Semantics of Concurrent Programs. Theor. Comput. Sci. 13, 45–60 (1981)CrossRefGoogle Scholar
  11. 11.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999) (third printing, 2001)Google Scholar
  12. 12.
    Fages, F., Rizk, A.: On the Analysis of Numerical Data Time Series in Temporal Logic. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 48–63. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. Formal Aspects of Computing 6(5), 512–535 (1994)CrossRefGoogle Scholar
  14. 14.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying Continuous-Time Markov Chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)Google Scholar
  16. 16.
    BioNessie: A Biochemical Pathway Simulation and Analysis Tool. University of Glasgow,
  17. 17.
    MC2(PLTLc) Website: MC2(PLTLc) - PLTLc model checker. University of Glasgow (2008),
  18. 18.
    Meffert, K., et al.: JGAP - Java Genetic Algorithms and Genetic Programming Package (2008),
  19. 19.
    Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., et al.: The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. J. Bioinformatics 19, 524–531 (2003)CrossRefGoogle Scholar
  20. 20.
    Fujarewicz, K., Kimmel, M., Lipniacki, T., Świerniak, A.: Parameter estimation for models of cell signaling pathways based on semi-quantitative data. In: BioMed 2006: Proceedings of the 24th IASTED international conference on Biomedical engineering, Anaheim, CA, USA, pp. 306–310. ACTA Press (2006)Google Scholar
  21. 21.
    Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine Learning Biochemical Networks from Temporal Logic Properties. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Robin Donaldson
    • 1
  • David Gilbert
    • 1
  1. 1.Bioinformatics Research CentreUniversity of GlasgowGlasgowScotland, UK

Personalised recommendations