On a Continuous Degree of Satisfaction of Temporal Logic Formulae with Applications to Systems Biology

  • Aurélien Rizk
  • Grégory Batt
  • François Fages
  • Sylvain Soliman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5307)


Finding mathematical models satisfying a specification built from the formalization of biological experiments, is a common task of the modeller that techniques like model-checking help solving, in the qualitative but also in the quantitative case. In this article we propose to go one step further by defining a continuous degree of satisfaction of a temporal logic formula with constraints. We show how such a satisfaction measure can be used as a fitness function with state-of-the-art search methods in order to find biochemical kinetic parameter values satisfying a set of biological properties formalized in temporal logic. We also show how it can be used to define a measure of robustness of a biological model with respect to some specification. These methods are evaluated on models of the cell cycle and of the MAPK signalling cascade.


Model Check Temporal Logic System Biology Markup Language Covariance Matrix Adaptation Evolution Strategy Numerical Trace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal Models and Sematics, vol. B, pp. 995–1072. MIT Press, Cambridge (1990)Google Scholar
  2. 2.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  3. 3.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sönmez, M.K.: Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the seventh Pacific Symposium on Biocomputing, pp. 400–412 (2002)Google Scholar
  4. 4.
    Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biochemical interaction networks. Theoretical Computer Science 325, 25–44 (2004)CrossRefGoogle Scholar
  6. 6.
    Bernot, G., Comet, J.P., Richard, A., Guespin, J.: A fruitful application of formal methods to biological regulatory networks: Extending thomas’ asynchronous logical approach with temporal logic. Journal of Theoretical Biology 229, 339–347 (2004)CrossRefPubMedGoogle Scholar
  7. 7.
    Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling pathways using the continuous time markow chains. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg (2006) (CMSB 2005 Special Issue)CrossRefGoogle Scholar
  8. 8.
    Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006) (CMSB 2005 Special Issue)CrossRefGoogle Scholar
  10. 10.
    Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model checking for biochemical processes. Cell Biochemistry and Biophysics 38, 271–286 (2003)CrossRefPubMedGoogle Scholar
  11. 11.
    Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schneider, D.: Validation of qualitative models of genetic regulatory networks by model checking: Analysis of the nutritional stress response in Escherichia coli. Bioinformatics 21, i19–i28 (2005)CrossRefGoogle Scholar
  12. 12.
    Fages, F.: Temporal logic constraints in the biochemical abstract machine BIOCHAM (invited talk). In: Hill, P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, pp. 1–5. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Kohn, K.W.: Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Molecular Biology of the Cell 10, 2703–2734 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fages, F., Rizk, A.: On temporal logic constraint solving for the analysis of numerical data time series. Theoretical Computer Science (2008) (CMSB 2007 special issue)Google Scholar
  15. 15.
    Batt, G., Yordanov, B., Weiss, R., Belta, C.: Robustness analysis and tuning of synthetic gene networks. Bioinformatics 23, 2415–2422 (2007)CrossRefPubMedGoogle Scholar
  16. 16.
    Segel, L.A.: Modeling dynamic phenomena in molecular and cellular biology. Cambridge University Press, Cambridge (1984)Google Scholar
  17. 17.
    Szallasi, Z., Stelling, J., Periwal, V. (eds.): System Modeling in Cellular Biology: From Concepts to Nuts and Bolts. MIT Press, Cambridge (2006)Google Scholar
  18. 18.
    Hucka, M., et al.: The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003)CrossRefPubMedGoogle Scholar
  19. 19.
    Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chemistry 4, 64–73 (2004)CrossRefGoogle Scholar
  20. 20.
    Calzone, L., Fages, F., Soliman, S.: BIOCHAM: An environment for modeling biological systems and formalizing experimental knowledge. BioInformatics 22, 1805–1807 (2006)CrossRefPubMedGoogle Scholar
  21. 21.
    Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using petri nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid petri net representation of gene regulatory network. In: Proceedings of the 5th Pacific Symposium on Biocomputing, pp. 338–349 (2000)Google Scholar
  23. 23.
    Priami, C., Regev, A., Silverman, W., Shapiro, E.: Application of a stochastic name passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)CrossRefGoogle Scholar
  24. 24.
    Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. Transactions on Computational Systems Biology, Special issue of BioConcur 2004 (to appear, 2004)Google Scholar
  25. 25.
    Nickovic, D., Maler, O.: Amt: a property-based monitoring tool for analog systems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 304–319. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Kitano, H.: Towards a theory of biological robustness. Molecular Systems Biology 3, 137 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9, 159–195 (2001)CrossRefPubMedGoogle Scholar
  28. 28.
    Chen, K.C., Csikász-Nagy, A., Györffy, B., Val, J., Novàk, B., Tyson, J.J.: Kinetic analysis of a molecular model of the budding yeast cell cycle. Molecular Biology of the Cell 11, 369–391 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. PNAS 97, 5818–5823 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Qiao, L., Nachbar, R.B., Kevrekidis, I.G., Shvartsman, S.Y.: Bistability and oscillations in the huang-ferrell model of mapk signaling. PLoS Computational Biology 3, 1819–1826 (2007)CrossRefPubMedGoogle Scholar
  31. 31.
    Fages, F., Soliman, S.: From reaction models to influence graphs and back: a theorem. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Ventura, A.C., Sepulchre, J.A., Merajver, S.D.: A hidden feedback in signaling cascades is revealed. PLoS Computational Biology (to appear, 2008)Google Scholar
  33. 33.
    Kwiatkowska, M., Norman, G., Parker, D.: Using probabilistic model checking in systems biology. SIGMETRICS Performance Evaluation Review 35, 14–21 (2008)CrossRefGoogle Scholar
  34. 34.
    de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching metrics for quantitative transition systems. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 97–109. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  35. 35.
    Fainekos, G., Pappas, G.: Robustness of temporal logic specifications. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS, vol. 4262, pp. 178–192. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  36. 36.
    Fainekos, G., Pappas, G.: Robust sampling for MITL specifications. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 147–162. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  37. 37.
    Dang, T., Donze, A., Maler, O., Shalev, N.: Sensitive state space exploration (submitted, 2008),
  38. 38.
    Chaves, M., Sontag, E., Sengupta, A.: Shape, size and robustness: feasible regions in the parameter space of biochemical networks (submitted, 2008) arXiv:0710.4269v1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Aurélien Rizk
    • 1
  • Grégory Batt
    • 1
  • François Fages
    • 1
  • Sylvain Soliman
    • 1
  1. 1.Projet Contraintes, INRIA RocquencourtLe Chesnay CedexFrance

Personalised recommendations