The Seismic Structure of Island Arc Crust

  • A. J. Calvert
Part of the Frontiers in Earth Sciences book series (FRONTIERS)


Intraoceanic island arcs are considered to be fundamental building blocks of continental crust that are accreted during arc–continent collision. P wave velocity models derived from wide-angle seismic surveys can constrain the thickness and composition of arc crust. The variations of P wave velocity with depth of the Aleutian, Izu-Bonin-Mariana, Lesser Antilles, Solomon, South Sandwich, and Tonga island arcs are compared, and the unextended Aleutian arc is contrasted in detail with the Izu-Bonin-Mariana arc-back-arc system, which has been variably subject to extension and arc rifting. The Aleutian arc is interpreted to be 35 km thick along much of its eastern section, while close to the volcanic line the Izu arc is 26–35 km thick, the Bonin arc 10–22 km thick, and the Mariana arc 16–24 km thick, with these variations in thickness primarily related to the amount of extension that has affected the different segments of the arc. Both wide-angle refraction and normal incidence reflection surveys indicate that the crust–mantle transition can extend 4–10 km beneath the top-Moho reflector used to determine most crustal thicknesses. At depths greater than 8–10 km, i.e., a confining pressure of ~0.2 GPa, all surveyed island arcs exhibit higher seismic velocities than continental crust, and are thus on average more mafic. However, at depths less than 8–10 km, P wave velocities in island arcs generally fall within the broad range of values corresponding to continental crust. These upper crustal velocities are consistent with the presence of tonalitic rocks, but at shallow depths felsic rocks cannot be readily discriminated from more mafic rocks with elevated porosity. Nevertheless lateral variations in seismic velocity along the Izu-Bonin arc on the scale of ~50 km can be correlated with the chemistry of arc volcanoes, suggesting a link between seismic velocity, crustal composition, and the magmatic evolution of the arc. Prior to arc–continent collision, sedimentary rocks derived from the approaching continent can accumulate across the forearc and in the back-arc basin, and may reach thicknesses as great as 12 km.


Seismic Velocity Mantle Transition Zone Seismic Velocity Model West Mariana Ridge Igneous Crust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am very grateful to those who generously contributed seismic velocity models for this paper: G. Christeson, W. Crawford, S. Holbrook, S. Kodaira, E. Kurashimo, R. Larter, D. Lizarralde, S. Miura, A. Nishizawa, D. Shillington, N. Takahashi, and H. van Avendonk. Constructive reviews by Steve Holbrook and an anonymous reviewer plus comments from Sue DeBari improved the final manuscript. The bathymetry data for all the maps were obtained from the National Oceanic and Atmospheric Administration ETOPO1 global relief model (Amante and Eakins 2009). This project was supported by the Natural Sciences and Engineering Research Council of Canada.


  1. Amante C, Eakins BW (2009) Arc-minute global relief model: procedures, data sources and analysis. Technical memorandum NESDIS NGDC-24, NOAA, BoulderGoogle Scholar
  2. Arai T (1987) Tectonics of Tanzawa mountains: constraints from metamorphic petrology. J Geol Soc Jpn 93:185–200CrossRefGoogle Scholar
  3. Bard JP, Maluski P, Matte P et al (1980) The Kohistan sequence, crust and mantle of an obducted island arc. Geol Bull Univ Peshawar 13:87–94Google Scholar
  4. Behn MD, Keleman PB (2003) Relationship between P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks. Geochem Geophys Geosyst. doi: 10.1029/2002GC000393 Google Scholar
  5. Behn MD, Keleman PB (2006) Stability of arc lower crust: Insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. J Geophys Res. doi: 10.1029/2006JB004327 Google Scholar
  6. Bibee LD, Shor GG Jr, Lu RS (1980) Inter-arc spreading in the Mariana Trough. Mar Geol 35:183–197CrossRefGoogle Scholar
  7. Birch F (1943) Elasticity of igneous rocks at high temperatures and pressures. Geol Soc Am Bull 54:263–286Google Scholar
  8. Bouysse P (1988) Opening of the Grenada back-arc basin and evolution of the Caribbean Plate during the Mesozoic and early Paleogene. Tectonophysics 149:121–143CrossRefGoogle Scholar
  9. Boynton CH, Westbrook GK, Bott, MHP et al (1979) A seismic refraction investigation of crustal structure beneath the Lesser Antilles island arc. Geophys JR astr Soc 58:371–393Google Scholar
  10. Brocher TM (2005) Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull Seismol Soc Am 95:2081–2092CrossRefGoogle Scholar
  11. Brugier N, Larter R (2001) Crustal structure and rate of growth of the South Sandwich arc from wide-angle seismic data. Eur Union Geosc Prog Abs 392–393Google Scholar
  12. Burke K (1988) Tectonic evolution of the Caribbean. Annu Rev Earth Planet Sci 16:201–230CrossRefGoogle Scholar
  13. Calvert AJ, Klemperer SL, Takahashi N et al (2008) Three-dimensional crustal structure of the Mariana island arc from seismic tomography. J Geophys Res. doi: 10.1029/2007JB004939 Google Scholar
  14. Card KD (1990) A review of the Superior Province of the Canadian Shield, a product of Archean accretion. Precambrian Res 48:99–156CrossRefGoogle Scholar
  15. Christensen NI (1979) Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradients, and crustal low velocity zones. J Geophys Res 84:6849–6857CrossRefGoogle Scholar
  16. Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust. J Geophs Res 100:9761–9788CrossRefGoogle Scholar
  17. Christeson G, Mann P, Escalona A et al (2008) Crustal structure of the Caribbean – northeastern South America arc-continent collision zone. J Geophys Res. doi: 10.1029/2007JB005373 Google Scholar
  18. Clift P, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys. doi: 10.1029/2003RG000127 Google Scholar
  19. Cook FA, Clowes RM, Snyder DB et al (2004) Precambrian crust beneath the Mesozoic northern Canadian Cordillera discovered by Lithoprobe seismic reflection profiling. Tectonics. doi: 10.1029:2002TC001412 Google Scholar
  20. Crawford AJ, Beccaluva L, Serri G (1981) Tectono-magmatic evolution of the West Philippine-Mariana region and the origin of boninites. Earth Planet Sci Lett 54:346–356CrossRefGoogle Scholar
  21. Crawford WC, Hidebrand JA, Dorman LM, Webb SC, Wiens DA (2002) Tonga Ridge and Lau Basin crustal structure from seismic refraction data. J Geophys Res. doi: 10.1029/2001JB001435 Google Scholar
  22. d’Ars JB, Jaupart C, Sparks RSJ (1995) Distribution of volcanoes in active margins. J Geophys Res 100:20421–20432CrossRefGoogle Scholar
  23. DeMets C, Dixon TH (1999) New kinematic models for Pacific-North America plate motion from 3 Ma to present: I. Evidence for steady motion and biases in the NUVEL-1A model. Geophys Res Lett 26:1921–1924CrossRefGoogle Scholar
  24. Dimalanta C, Taira A, Yumul GP Jr et al (2002) New rates of western Pacific island arc magmatism from seismic and gravity data. Earth Planet Sci Lett 202:105–115CrossRefGoogle Scholar
  25. Fliedner MM, Klemperer SK (1999) Structure of an island-arc: wide-angle studies in the eastern Aleutian Islands, Alaska. J Geophys Res 104:10667–10694CrossRefGoogle Scholar
  26. Fryer P (1995) Geology of the Mariana Trough. In: Taylor B (ed) Back-arc basins: tectonics and magmatism. Plenum, New YorkGoogle Scholar
  27. Fujie G, Ito A, Kodaira S et al (2006) Confirming sharp bending of the Pacific plate in the northern Japan trench subduction zone by applying a travel time mapping method. Phys Earth Planet Int 157:72–85CrossRefGoogle Scholar
  28. Garrido CJ, Bodinier J-L, Burg J-P et al (2006) Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan paleo-arc complex (Northern Pakistan): implications for intra-crustal differentiation of island arcs and generation of continental crust. J Petrol 47:1873–1914CrossRefGoogle Scholar
  29. Geist EL, Childs JR, Scholl DW (1988) The origin of summit basins of the Aleutian Ridge: implications for block rotation of an arc massif. Tectonics 7:327–342CrossRefGoogle Scholar
  30. Gill JB (1981) Orogenic andesites and plate tectonics. Springer, BerlinCrossRefGoogle Scholar
  31. Gorshkov GS (1970) Volcanism and the upper mantle. Plenum, New YorkCrossRefGoogle Scholar
  32. Grow JA (1973) Crustal and upper mantle structure of the central Aleutian arc. Geol Soc Am 84:2169–2192CrossRefGoogle Scholar
  33. Hoffman PF (1989) Precambrian geology and tectonic history of North America. In: Bally AW, Palmer PR (eds) The Geology of North America: an Overview, vol A. Geol Soc Am, BoulderGoogle Scholar
  34. Holbrook WS, Lizarralde D, McGeary S et al (1999) Structure and composition of the Aleutian island arc and implications for continental growth. Geology 27:31–34CrossRefGoogle Scholar
  35. Hole JA (1992) Nonlinear high-resolution three-dimensional seismic travel time tomography. J Geophys Res 97:6553–6562CrossRefGoogle Scholar
  36. Hole JA, Zelt BC (1995) 3-D finite-difference reflection travel times. Geophys J Int 121:427–434CrossRefGoogle Scholar
  37. Hussong DM, Uyeda S (1981) Tectonic processes and the history of the Mariana arc, a synthesis of the results of Deep Sea Drilling Project Leg 60. In: Hussong DM (ed) Initial Reports of the Deep Sea Drilling Project, Vol 60. Ocean Drilling Program, College StationGoogle Scholar
  38. Hyndman RD, Shearer PM (1989) Water in the lower continental crust – modelling magnetotelluric and seismic reflection results. Geophys J Int 98:343–365CrossRefGoogle Scholar
  39. Ishizuka O, Kimura J, Li YB et al (2006) Early stages in the evolution of Izu-Bonin arc volcanism: new age, chemical, and isotopic constraints. Earth Planet Sci Lett 250:385–401CrossRefGoogle Scholar
  40. Ito A, Fujie G, Kodaira S et al (2005) Bending of the subducting oceanic plate and its implication for rupture propagation of large interplate earthquakes off Miyagi, Japan, in the Japan trench subduction zone. Geophys Res Lett. doi: 10.1029/2004GL022307 Google Scholar
  41. Iturrino GJ, Christensen NI, Kirby S, Salisbury MH (1991) Seismic velocities and elastic properties of oceanic gabbroic rocks from Hole 735B. Proc Ocean Drill Program Sci Results 118:227–244Google Scholar
  42. Iturrino GJ, Miller DJ, Christensen NI (1996) Velocity behavior of lower crustal and upper mantle rocks from a fast-spreading ridge at Hess Deep. Proc Ocean Drill Program Sci Results 147:417–440Google Scholar
  43. Jacob KH, Hamada K (1972) The upper mantle beneath the Aleutian island arc from pure-path Rayleigh-wave dispersion data. Bull Seismol Soc Am 62:1439–1454Google Scholar
  44. Jarrard RD (1986) Relations among subduction parameters. Rev Geophys 24:217–284CrossRefGoogle Scholar
  45. Karig DE (1970) Ridges and basins of the Tonga-Kermadec island arc system. J Geophys Res 75:239–254CrossRefGoogle Scholar
  46. Kawate S, Arima M (1998) Petrogenesis of the Tanzawa plutonic complex, central Japan: exposed felsic crust of the Izu-Bonin-Mariana arc. Island Arc 7:342–358CrossRefGoogle Scholar
  47. Kern H (1978) The effect of high temperature and high confining pressure on compressional wave velocities in quartz-bearing and quartz-free igneous and metamorphic rocks. Tectonophysics 44:185–203CrossRefGoogle Scholar
  48. Kitamura K, Ishikawa M, Arima M (2003) Petrological model of the northern Izu-Bonin-Mariana arc crust: constraints from high pressure measurements of elastic wave velocities of the Tanzawa plutonic rocks, central Japan. Tectonophysics 371:213–221CrossRefGoogle Scholar
  49. Kobayashi KS, Kasuga S, Kl O (1995) Shikoku Basin and its margins. In: Taylor B (ed) Back-arc basins: tectonics and magmatism. Plenum, New YorkGoogle Scholar
  50. Kodaira S, Sato T, Takahashi N et al (2007a) Seismological evidence for variable growth of crust along the Izu intraoceanic arc. J Geophys Res. doi: 10.1029/2006JB004593 Google Scholar
  51. Kodaira A, Sato T, Takahashi N et al (2007b) New seismological constraints on growth of continental crust in the Izu-Bonin intra-oceanic arc. Geology 35:1031–1034CrossRefGoogle Scholar
  52. Kono Y, Ishikawa M, Harigane Y et al (2009) P- and S-wave velocities of the lowermost crustal rocks from the Kohistan arc: implications for seismic Moho discontinuity attributed to abundant garnet. Tectonophysics 467:44–54CrossRefGoogle Scholar
  53. Korenaga J, Kelemen PB, Holbrook WS (2002) Methods for resolving the origin of large igneous provinces from crustal seismology. J Geophys Res. doi: 10.1029/2001JB001030 Google Scholar
  54. Kusznir, NJ, Park RG (1987) The extensional strength of the continental lithosphere: its dependence on geothermal gradient, and crustal composition and thickness. In: Coward MP, Dewey JF, Hancock, PL (eds) Continental extensional tectonics. Geol Soc, London.Google Scholar
  55. Larner K, Chambers YM et al (1983) Coherent noise in marine seismic data. Geophysics 48:854–886CrossRefGoogle Scholar
  56. Leat PT, Larter RD (2003) Intra-oceanic subduction systems: introduction. In: Larter RD, Leat PT (eds) Intra-oceanic subduction systems: tectonic and magmatic processes, vol 219, Geol Soc Lon Spec Pub., pp 1–17Google Scholar
  57. Lizarralde D, Holbrook WS, McGeary S et al (2002) Crustal structure of a volcanic arc, wide-angle results from the western Alaska Peninsula. J Geophys Res. doi: 10.1029/2001JB000230 Google Scholar
  58. Malfait BT, Dinkelman MG (1972) Circum-Caribbean tectonic and igneous activity and the evolution of the Caribbean plate. Geol Soc Am Bull 83:251–271CrossRefGoogle Scholar
  59. Martinez F, Taylor B (2006) Modes of crustal accretion in back-arc basins: Inferences from the Lau Basin. In: Christie DM et al (eds) Back-arc spreading systems: Geological, biological, chemical and physical interactions. Am Geophys Union, WashingtonGoogle Scholar
  60. Miller DJ, Christensen NI (1994) Seismic signature and geochemistry of an island arc: a multidisciplinary study of the Kohistan accreted terrane, northern Pakistan. J Geophys Res 99:11623–11642CrossRefGoogle Scholar
  61. Miura S, Suyehiro K, Takahashi N et al (2004) Seismological structure and implications of collision between the Ontong Java plateau and Solomon island arc from ocean bottom seismometer-airgun data. Tectonophysics 389:191–220CrossRefGoogle Scholar
  62. Molnar P, Atwater T (1978) Interarc spreading and Cordilleran tectonics as alternatives related to the age of subducted oceanic lithosphere. Earth Planet Sci Lett 41:330–340CrossRefGoogle Scholar
  63. Murauchi S, Den N, Asano S et al (1968) Crustal structure of the Philippine Sea. J Geophys Res 73:3143–3171.Google Scholar
  64. Nakajima K, Arima M (1998) Melting experiments on hydrous low-K tholeiite: implications for the genesis of tonalitic crust in the Izu-Bonin-Mariana arc. Island Arc 7:359–373CrossRefGoogle Scholar
  65. Nishizawa A, Kaneda K, Katagiri Y et al (2007) Variation in crustal structure along the Kyushu-Palau Ridge at 15–21oN on the Philippine Sea plate based on seismic refraction profiles. Earth Planets Space 59:e17–e20Google Scholar
  66. Nitsuma N (1989) Collision tectonics in the South Fossa Magna, Central Japan. Mod Geol 14:3–18Google Scholar
  67. Oakley AJ, Taylor B, Moore GF, Gooliffe A (2009) Sedimentary, volcanic, and tectonic processes of the central Mariana Arc: Mariana Trough back-arc basin formation and the West Mariana Ridge. Geochem Geophys Geosyst. doi: 10.1029/2008GC002312 Google Scholar
  68. Okino K, Shimakawa Y, Nagaoka S (1994) Evolution of the Shikoku Basin. J Geomagn Geoelectr 46:463–479CrossRefGoogle Scholar
  69. Okino K, Ohara Y, Kasuga S et al (1999) The Philippine Sea: new survey results reveal the structure and the history of the marginal basins. Geophys Res Lett 26:2287–2290CrossRefGoogle Scholar
  70. Plafker G, Berg HC (1994) Overview of the geology and tectonic evolution of Alaska. In: Plafker G, Berg HC (eds) The Geology of North America, vol G-1, The Geology of Alaska. Geol Soc Am, BoulderGoogle Scholar
  71. Plafker G, Moore JC, Winkler GR (1994) Geology of the southern Alaska margin. In: Plafker G, Berg HC (eds) The Geology of North America, vol G-1, The Geology of Alaska. Geol Soc Am, BoulderGoogle Scholar
  72. Rudnick LR, Fountain MD (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309CrossRefGoogle Scholar
  73. Sato T, Kodaira S, Takahashi N et al (2009) Amplitude modeling of the seismic reflectors in the crust-mantle transition layer beneath the volcanic front along the northern Izu-Bonin island arc. Geochem Geophys Geosyst. doi: 10.1029/2008GC001990 Google Scholar
  74. Scholl DW, Stevenson AJ, Mueller S et al (1992) Exploring the notion that southeast-Asian-type escape tectonics and trench clogging are involved in regional-scale deformation of Alaska and the formation of the Aleutian-Bering sea region. In: Flower M, McCabe R, Hilde T (eds) Southeast Asia structure, tectonics and magmatism, Proc Geod Res Inst Symp. Texas A&M Univ, College StationGoogle Scholar
  75. Seno T, Stein S, Gripp AE (1993) A model for the motion of the Philippine Sea plate consistent with NUVEL and geological data. J Geophys Res 98:17941–17948CrossRefGoogle Scholar
  76. Shillington DJ, van Avendonk HJA, Holbrook WS et al (2004) Composition and structure of the central Aleutian island arc from arc-parallel wide-angle seismic data. Geochem Geophys Geosyst. doi: 10.1029/2004GC000715 Google Scholar
  77. Shor GG Jr, Kirk HK, Menard HW (1971) Crustal structure of the Melanesian area. J Geophys Res 76:2562–2586CrossRefGoogle Scholar
  78. Speed RC, Walker JA (1991) Oceanic crust of the Grenada basin in the southern Lesser Antilles arc platform. J Geophys Res 96:3835–3851CrossRefGoogle Scholar
  79. Stern RJ (2002) Subduction zones. Rev Geophys. doi: 10.1029/2001RG000108 Google Scholar
  80. Stern RJ, Bloomer SH (1992) Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geol Soc Am Bull 104:1621–1636CrossRefGoogle Scholar
  81. Stern RJ, Fouch MJ, Klemperer SL (2003) An overview of the Izu-Bonin-Mariana subduction factory. In: Eiler JM (ed) Inside the subduction factory. Am Geophys Union, WashingtonGoogle Scholar
  82. Suyehiro K, Takahashi N, Ariie Y et al (1996) Continental crust, crustal underplating, and low-Q upper mantle beneath an island arc. Science 272:390–392CrossRefGoogle Scholar
  83. Takahashi N, Suyehiro K, Shinohara M (1998) Implications from the seismic crustal structure of the northern Izu-Bonin arc. Island Arc 7:383–394CrossRefGoogle Scholar
  84. Takahashi N, Kodaira S, Klemperer S et al (2007) Crustal structure and evolution of the Mariana intra-oceanic island arc. Geology 35:203–206CrossRefGoogle Scholar
  85. Takahashi N, Kodaira S, Tatsumi Y et al (2008) Structure and growth of the Izu-Bonin-Mariana arc crust: 1. Seismic constraint on crust and mantle structure of the Mariana arc–back-arc system. J Geophys Res. doi: 10.1029/2007JB005120 Google Scholar
  86. Takahashi N, Kodaira S, Tatsumi Y et al (2009) Structural variations of arc crusts and rifted margins in the southern Izu-Ogasawara arc-back arc system. Geochem Geophys Geosyst. doi: 10.1029/2008GC002146 Google Scholar
  87. Tani K, Dunkley DJ, Kimura J-I et al (2010) Syncollisional rapid granitic magma formation in an arc-arc collision zone: evidence from the Tanzawa plutonic complex, Japan. Geology 38:215–218CrossRefGoogle Scholar
  88. Tatsumi Y, Tani K, Kogiso T et al (2008) Structure and growth of the Izu-Bonin-Mariana arc crust: 2. Arc evolution, continental crust formation, and crust-mantle transformation. J Geophys Res. doi: 10.1029/2007JB005121 Google Scholar
  89. Taylor B (1992) Rifting and volcano-tectonic evolution of the Izu-Bonin-Mariana arc. In: Maddox E (ed) Proceedings of the ocean drilling program, scientific results, Vol 126. Ocean Drilling Program, College StationGoogle Scholar
  90. Taylor B, Karner GD (1983) On the evolution of marginal basins. Rev Geophys Space Phys 21:1727–1741CrossRefGoogle Scholar
  91. Uyeda S, Kanamori H (1979) Back-arc opening and the mode of subduction. J Geophys Res 84:47–56CrossRefGoogle Scholar
  92. Van Avendonk HJA, Shillington DJ, Holbrook WS, Hornbach MJ (2004) Inferring crustal structure in the Aleutian island arc from a sparse wide-angle seismic data set. Geochem Geophys Geosyst. doi: 10.1029/2003GC000664 Google Scholar
  93. Von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29:279–316CrossRefGoogle Scholar
  94. White RS (1984) Atlantic oceanic crust: Seismic structure of a slow-spreading ridge. In: Gass IG (ed) Ophiolites and oceanic lithosphere, vol 13. Geol Soc Lon, LondonGoogle Scholar
  95. Wiebenga WA (1973) Crustal structure of the New Britain-New Zealand region. In: Coleman PJ (ed) The Western Pacific. Western Australia University Press, PerthGoogle Scholar
  96. Yamamoto Y, Kawakami S (2005) Rapid tectonics of the late Miocene Boso accretionary prism related to the Izu-Bonin arc collision. Island Arc 14:178–198CrossRefGoogle Scholar
  97. Zelt CA, Barton PJ (1998) 3-D seismic refraction tomography: a comparison of two methods applied to data from the Faroes Basin. Geophys J Int 103:7187–7210CrossRefGoogle Scholar
  98. Zelt CA, Smith RB (1992) Seismic traveltime inversion for 2-D crustal velocity structure. Geophys J Int 108:16–34CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Earth SciencesSimon Fraser UniversityBurnabyCanada

Personalised recommendations