Symbiotic Interaction Between Dinoflagellates and the Demosponge Lubomirskia baicalensis: Aquaporin-Mediated Glycerol Transport

  • Werner E. G. Müller
  • Sergey I. Belikov
  • Oxana V. Kaluzhnaya
  • L. Chernogor
  • Anatoli Krasko
  • Heinz C. Schröder
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 47)


Lake Baikal is rich in endemic sponge species, among them the arborescently growing species Lubomirskia baicalensis. During winter when the lake is covered by ice, this species reproduces sexually, reflecting a high metabolic activity. Throughout the year, L. baicalensis lives in association with dinoflagellates, which – according to the data presented herein – are symbiotic. The dinoflagellates have been determined on the basis of their rDNA/ITS characteristics and were found to display high sequence similarity to Gymnodinium sanguineum. The dinoflagellates give the sponge its characteristic green color, reflecting the high chlorophyll content (chlorophyll-a content in March and September of 3.2 ± 0.6 μg/g and 1.9 ± 0.5 μg/g of protein, respectively). With the in vitro cell culture system for sponges, the primmorphs, it could be demonstrated that [14C] glycerol is readily taken up by sponge cells; this process can be inhibited by phloretin, an aquaporin channel blocker. In order to prove the effect of cholesterol on the intermediate metabolism of the sponge cells, molecule probes, cDNAs for key enzymes in gluconeogenesis, glycolysis, and citric acid, have been applied in Northern blot studies. The data revealed that the genes coding for the enzymes citrate synthase and fructose-1,6-bisphosphatase are strongly upregulated after exposure of primmorphs to glycerol. This effect is abolished by phloretin. The genes encoding the phosphoglucose isomerase and pyruvate dehydrogenase do not respond to glycerol supply, suggesting that their expression is not under genetic control in L. baicalensis. To prove the assumption that the aquaporin channel is involved in the influx of glycerol in sponge cells, this cDNA was cloned and applied for in situ hybridization studies. The results obtained show that cells surrounding the dinoflagellates become brightly stained after hybridization with the aquaporin this probe. This demonstrates that L. baicalensis cells respond to glycerol, a metabolite which might be supplied by the dinoflagellates and imported via the aquaporin channel into the sponge cells.


Pyruvate Dehydrogenase Marine Sponge Citric Acid Cycle Symbiotic Interaction Sponge Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badaut J, Regli L (2004) Distribution and possible roles of aquaporin-9 in the brain. Neuroscience 129:971–981CrossRefGoogle Scholar
  2. Baillie BK, Belda-Baillie CA, Maruyama T (2000) Conspecificity and Indo-Pacific distribution of Symbiodinium genotypes (Dinophyceae) from giant clams. J Phycol 36:1153–1161CrossRefGoogle Scholar
  3. Borgnia M, Nielsen S, Engel A, Agre P (1999) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458CrossRefGoogle Scholar
  4. Chrispeels MJ, Agre P (1994) Aquaporins: water channel proteins of plants and animal cells. Trends Biochem. Sci. 19, 421–425CrossRefGoogle Scholar
  5. Coligan JE, Dunn BM, Ploegh HL, Speicher DW, Wingfield PT (2000) Current protocols in protein science. Wiley, Chichester, pp 2.0.1–2.8.17Google Scholar
  6. Corsetti FA, Olcott AN, Bakerman C (2006) The biotic response to Neoproterozoic snowball Earth. Palaegeog Palaeoclimat Pataeoecol 232:114–130CrossRefGoogle Scholar
  7. Diaz JP (1979) Variations, differenciations et fonctions des categories cellulaire de la demosponge Suberites massa Nardo, au cours du cycle biologique annuel et dans des coditions experimentales. Thèse de Université de Sciences et Technique Languedoc, pp 1–332Google Scholar
  8. Efremova SM (1981) The structure and embryonal development of the Baikalian sponge Lubomirskia baicalensis (Pallas) and relationships of Lubomirskiidae with other sponges. In: Morphogenesis in sponges. State University, Leningrad, pp 93–107Google Scholar
  9. Felsenstein J (1993) PHYLIP, ver. 3.5. University of Washington, SeattleGoogle Scholar
  10. Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38:105–113CrossRefGoogle Scholar
  11. Gambert S, Héliès-Toussaint C, Grynberg A (2005) Regulation of intermediary metabolism in rat cardiac myocyte by extracellular glycerol. Biochim Biophys Acta 1736:152–162CrossRefGoogle Scholar
  12. Garcia-Hernández J, Garcia-Rico L, Jara-Marini ME, Barraza-Guardado R, Weaver AH (2005) Concentration of heavy metals in sediment and organisms during a harmful algal bloom (HAB) at Kun Kaak Bay, Sonora, Mexico. Marine Poll Bull 50:733–739CrossRefGoogle Scholar
  13. Gil TA, Kazarinova TF, Hramtsova TG, Zaitsev IV, Stom DJ (1997) The consumption of microorganisms by the Baikal sponge. Fresenius Environ Bull 6:444–449Google Scholar
  14. Gonzales JM, Moran MA (1997) Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63:4237–4242CrossRefGoogle Scholar
  15. Gorin MB, Yancey SB, Cline J, Revel JP, Horwitz J (1984) The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell 39:49–59CrossRefGoogle Scholar
  16. Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997) Cloning an functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786CrossRefGoogle Scholar
  17. Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 244:268–274CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jeffrey SW, Humphrey, GF (1975) New spectrophotometric equations for determining chlorohyll a, b, c1, and c2 in higher plants, algae, and natural phytoplankton. Biochem Physiol Pflanzen 17:191–194CrossRefGoogle Scholar
  19. Kennish MJ (1994) Practical handbook of marine science. CRC Press, Boca Raton, ILGoogle Scholar
  20. Kong SE, Hall JC, Cooper D, McCauley RD (2000) Glutamine-enriched parenteral nutrition regulates the activity and expression of intestinal glutaminase. Biochim Biophys Acta 1475:67–75CrossRefGoogle Scholar
  21. Kozhov M (1963) Lake Baikal and its life. W. Junk, The HagueCrossRefGoogle Scholar
  22. Kozhova OM, Izmesteva LR (1998) Lake Baikal: evolution and biodiversity. Brackhys, LeidenGoogle Scholar
  23. Masuda Y, Itskovich VB, Veinberg EV, Efremova SM (1997) Studies on the taxonomy and distribution of freshwater sponges in the Lake Baikal. In: Miyzaki N (ed) Animal community, environment and phylogeny in Lake Baikal. Otsuchi Marine Center/Ocean Research Institute, Tokyo, pp 21–41Google Scholar
  24. Metchnikoff E (1892) Lecons sur la pathologie comparée de l'inflammation. G Masson, ParisGoogle Scholar
  25. Müller WEG (2001) How was metazoan threshold crossed: the hypothetical Urmetazoa. Comp Biochem Physiol [A] 129:433–460CrossRefGoogle Scholar
  26. Müller WEG, Zahn RK, Kurelec B, Müller I, Uhlenbruck G, Vaith P (1981) Cell aggregation of the marine sponge Geodia cydonium. Identification of the lectin-producing cells. Eur J Cell Biol 24:28–35PubMedGoogle Scholar
  27. Müller WEG, Wiens M, Batel R, Steffen R, Borojevic R, Custodio MR (1999) Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula. Marine Ecol Progr Ser 178:205–219CrossRefGoogle Scholar
  28. Müller WEG, Koziol C, Wiens M, Schröder HC (2000) Stress response in marine sponges: genes and molecules involved and their use as biomarkers. In: Storey KB, Storey J (eds) Environmental stressors and gene responses. Elsevier Science, Amsterdam, pp 193–208CrossRefGoogle Scholar
  29. Pao GM, Wu LF, Johnson KD, Höfte H, Chrispeels MJ, Sweet G, Sanda, NN, Saier MH (1991) Evolution of the MIP family of integral membrane transport proteins. Mol Microbiol 5:33–37CrossRefGoogle Scholar
  30. Park JH, Saier MH (1996) Phylogenetic characterization of the MIP family of transmembrane channel proteins. J Membr Biol 153:171–180CrossRefGoogle Scholar
  31. Pawlowski J, Holzmann M, Fahrni JF, Pochon X, Lee JJ (2001) Molecular identification of algal endosymbionts in large miliolid Foraminifera: 2. Dinoflagellates. J Eukaryot Microbiol 48:368–373CrossRefGoogle Scholar
  32. Perović S, Schröder HC, Sudek S, Grebenjuk VA, Bate, R, Štifanić M, Müller IM, Müller WEG (2003) Expression of one sponge Iroquois homeobox gene in primmorphs from Suberites domuncula during canal formation. Evol Dev 5:240–250CrossRefGoogle Scholar
  33. Perović-Ottstadt S, Adell T, Proksch P, Wiens M, Korzhev M, Gamulin V, Müller IM, Müller WEG (2004) A (1→3)-β-D-glucan recognition protein from the sponge Suberites domuncula: mediated activation of fibrinogen-like protein and epidermal growth factor gene expression. Eur J Biochem 271:1924–1937.CrossRefGoogle Scholar
  34. Pile AJ, Patterson MR, Savarese M, Chernykh VI, Fialkov VA (1997) Trophic effects of sponge feeding within Lake Baikal's littoral zone. 2. Sponge abundance, diet, feeding efficiency, and carbon flux. Limnol Oceanogr 42:178–184Google Scholar
  35. Proksch P (1994) Defensive role for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon 32:639–655CrossRefGoogle Scholar
  36. Rao J, Argos P (1986) A conformational preference parameter to predict helices in integral membrane proteins. Biochem Biophys Acta 869:197–214Google Scholar
  37. Reiswig HM (1974) Water transport, respiration and energetics of three tropical marine sponges. J Exp Mar Biol Ecol 14:231–249CrossRefGoogle Scholar
  38. Reitner J, Wörheide G (2002) Non-lithistid Demospongiae – origins of their palaeobiodiversity and highlights in history of preservation. In: Hooper JNA, Van Soest RWM (eds) Systema Porifera: a guide to the classification of sponges. Kluwer/Plenum, New York, pp 52–70CrossRefGoogle Scholar
  39. Reizer J, Reizer A, Saier MH (1993) The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway of evolution, and proposed functional differentiation of the two repeated halves of the proteins. Crit Rev Biochem Mol Biol 28:235–257CrossRefGoogle Scholar
  40. Saitou N, Nei M (1987) Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  41. Savarese M, Patterson MR, Chernykh VI, Fialkov VA (1997) Trophic effects of sponge feeding within Lake Baikal's littoral zone. 1. In situ pumping rate. Limnol Oceanogr 42:171–178CrossRefGoogle Scholar
  42. Schåcke H, Müller IM, Müller WEG (1994) Tyrosine kinase from the marine sponge Geodia cydonium: the oldest member belonging to the receptor tyrosine kinase class II family. In: Müller WEG (ed) Use of aquatic invertebrates as tools for monitoring of environmental hazards. Gustav Fischer Verlag, Stuttgart, pp 201–211Google Scholar
  43. Schröder HC, Perović-Ottstadt S, Grebenjuk VA , Engel S, Müller IM, Müller WEG (2005) Biosilica formation in spicules of the sponge Suberites domuncula: synchronous expression of a gene cluster. Genomics 85:666–678CrossRefGoogle Scholar
  44. Simpson TL (1984) The cell biology of sponges. Springer-Verlag, New YorkCrossRefGoogle Scholar
  45. Steidinger, K.A, Tangen K (1996) Dinoflagellates. In: Tomas CR (ed) Identifying marine diatoms and dinoflagellates. Academic, San Diego, CA, pp 387–584CrossRefGoogle Scholar
  46. Stryer L (1995) Biochemistry. Freeman, New YorkGoogle Scholar
  47. Thakur NL, Müller WEG (2005) Sponge-bacteria Association: a useful model to explore symbiosis in marine invertebrates. Symbiosis 39:109–116.Google Scholar
  48. Thakur NL, Perović-Ottstadt S, Batel R, Korzhev M, Diehl-Seifert B, Müller IM, Müller WEG (2005) Innate immune defense of the sponge Suberites domuncula against gram-positive bacteria: induction of lysozyme and AdaPTin. Marine Biology 146:271–282CrossRefGoogle Scholar
  49. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  50. Vacelet J (1971) Étude en microscopie electronique de l'association entre une cyanophycee chroococcale et une éponge du genre Verongia. J Microsc 12:363–380Google Scholar
  51. Wiens, M, Müller WEG (2006) Cell death in Porifera: molecular players in the game of apoptotic cell death in living fossils. Can J Zool/Rev Can Zool 84:307–321CrossRefGoogle Scholar
  52. Wiens M, Luckas B, Brümmer F, Ammar MSA, Steffen R, Batel R, Diehl-Seifert B, Schröder H C, Müller WEG (2003) Okadaic acid: a potential defense molecule for the sponge Suberites domuncula. Marine Biol 142:213–223CrossRefGoogle Scholar
  53. Wiens M, Korzhev M, Krasko A, Thakur NL, Perović-Ottstadt S, Breter HJ, Ushijima H, Diehl-Seifert B, Müller IM, Müller WEG (2005) Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway: induction of a perforin-like molecule. J Biol Chem 280:27949–27959CrossRefGoogle Scholar
  54. Wiens M, Belikov SI, Kaluzhnaya OV, Krasko A, Schröder HC, Perovic-Ottstadt S, Müller WEG (2006) Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Dev Genes Evol 216:229–242CrossRefGoogle Scholar
  55. Wilkinson CR (1992) Symbiotic interactions between marine sponges and algae. In: Reisser W (ed) Algae and symbioses: plants, animals, fungi, viruses, interaction explored. Biopress, Bristol, pp 111–151Google Scholar
  56. Zaloga GP (2006) Parenteral nutrition in adult inpatients with functioning gastrointestinal tracts: assessment of outcomes. Lancet 367:1101–1111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Werner E. G. Müller
    • 1
  • Sergey I. Belikov
    • 1
  • Oxana V. Kaluzhnaya
    • 1
  • L. Chernogor
    • 1
  • Anatoli Krasko
    • 1
  • Heinz C. Schröder
    • 1
  1. 1.Limnological Institute of the Siberian Branch of Russian Academy of SciencesLaboratory for Analytical/Bioorganic ChemistryIrkutskRussia

Personalised recommendations