The Application of Silicon and Silicates in Dentistry: A Review

  • A.-K. Lührs
  • Werner Geurtsen
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 47)


Silicates and silicate-based compounds are frequently used materials in dentistry. One of their major applications is their use as fillers in different dental filling materials such as glass-ionomer cements, compomers, composites, and adhesive systems. In these materials, the fillers react with acids during the setting process or they improve the mechanical properties by increasing physical resistance, thermal expansion coefficient and radiopacity in acrylic filling materials. They also reduce polymerization shrinkage, and increase esthetics as well as handling properties. Furthermore, silicates are used for the tribochemical silication of different surfaces such as ceramics or alloys. The silicate layer formed in this process is the chemical basis for silanes that form a bond between this layer and the organic composite matrix. It also provides a micromechanical bond between the surface of the material and the composite matrix. Silicates are also a component of dental ceramics, which are frequently used in dentistry, for instance for veneers, inlays, and onlays, for denture teeth, and for full-ceramic crowns or as crown veneering materials.


Filler Content Filler Particle Mineral Trioxide Aggregate Resin Cement Dental Hard Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaral R, Ozcan M, Bottino MA, Valandro LF (2006) Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: the effect of surface conditioning. Dent Mater 22:283–290CrossRefPubMedPubMedCentralGoogle Scholar
  2. Atai M, Yassini E, Amini M, Watts DC (2007) The effect of a leucite-containing ceramic filler on the abrasive wear of dental composites. Dent Mater 23:1181–1187CrossRefPubMedPubMedCentralGoogle Scholar
  3. Attin T, Buchalla W, Kielbassa AM, Hellwig E (1995) Curing shrinkage and volumetric changes of resin-modified glass ionomer restorative materials. Dent Mater 11:359–362CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bayne SC, Heymann HO, Swift EJ Jr (1994) Update on dental composite restorations. J Am Dent Assoc 125:687–701CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bayne SC, Thompson JY, Swift EJ Jr, Stamatiades P, Wilkerson M (1998) A characterization of first-generation flowable composites. J Am Dent Assoc 129:567–577CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bitter K, Paris S, Hartwig C, Neumann K, Kielbassa AM (2006) Shear bond strength of different substrates bonded to lithium disilicate ceramics. Dent Mater J 25:493–502CrossRefPubMedPubMedCentralGoogle Scholar
  7. Buonocore MG (1955) A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 34:849–853CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burke FJ, Fleming GJ, Nathanson D, Marquis PM (2002) Are adhesive technologies needed to support ceramics? An assessment of the current evidence. J Adhes Dent 4:7–22PubMedPubMedCentralGoogle Scholar
  9. Clelland NL, Pagnotto MP, Kerby RE, Seghi RR (2005) Relative wear of flowable and highly filled composite. J Prosthet Dent 93:153–157CrossRefPubMedPubMedCentralGoogle Scholar
  10. Condon JR, Ferracane JL (1997) In vitro wear of composite with varied cure, filler level, and filler treatment. J Dent Res 76:1405–1411CrossRefPubMedPubMedCentralGoogle Scholar
  11. Edelhoff D, Abuzayeda M, Yildirim M, Spiekermann H, Marx R (2000) Adhäsion von Kompositen an hochfesten Strukturkeramiken nach unterschiedlicher Oberflächenbehandlung. Dtsch Zahnärztl Z 55:617–623Google Scholar
  12. Eliades G, Kakaboura A, Palaghias G (1998) Acid-base reaction and fluoride release profiles in visible light-cured polyacid-modified composite restoratives (compomers). Dent Mater 14:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ernst, CP (2003) Eine aktuelle Standortbestimmung zahnärztlicher Füllungskomposite. Zahnärztliche Mitteilungen 93:30–40Google Scholar
  14. Faltermeier A, Rosentritt M, Faltermeier R, Reicheneder C, Mussig D (2007) Influence of filler level on the bond strength of orthodontic adhesives. Angle Orthod 77:494–498CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ferracane JL (1989) In vitro evaluation of composite resins. Structure-property relationships. Development of assessment criteria, Trans Acad Dent Mater 2:6–35Google Scholar
  16. Ferracane JL (1995) Current trends in dental composites. Crit Rev Oral Biol Med 6:302–318CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ferrari M, Tay FR (2003) Technique sensitivity in bonding to vital, acid-etched dentin. Oper Dent 28:3–8PubMedPubMedCentralGoogle Scholar
  18. Fortin D, Vargas MA (2000) The spectrum of composites: new techniques and materials. J Am Dent Assoc 131:26S–30SCrossRefPubMedPubMedCentralGoogle Scholar
  19. Frankenberger R, Taschner R, Lohbauer U, Krämer NH, Rosenbusch S, Reich SM (2006) Aktuelle Aspekte der intraoralen Keramikreparatur. ZWR 115:70–75CrossRefGoogle Scholar
  20. Gasser O (1987) Glass ionomer cements: the present and future from the viewpoint of the science of materials Schweiz Monatsschr Zahnmed 97:328–335Google Scholar
  21. Geurtsen W (1999) Kunststoffüllung. In: Praxis der Zahnheilkunde Band 2, Kariologie und Füllungstherapie, Urban & Schwarzenberg Verlag München, pp 179–211Google Scholar
  22. Guggenberger R (1989) Rocatec system – adhesion by tribochemical coating. Dtsch Zahnarztl Z 44:874–876PubMedPubMedCentralGoogle Scholar
  23. Hefferren JJ (1976) A laboratory method for assessment of dentifrice abrasivity. J Dent Res 55:563–573CrossRefPubMedPubMedCentralGoogle Scholar
  24. Heikkinen TT, Lassila LV, Matinlinna JP, Vallittu PK (2007) Effect of operating air pressure on tribochemical silica-coating. Acta Odontol Scand 65:241–248CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hervas-Garcia A, Martinez-Lozano MA, Cabanes-Vila J, Barjau-Escribano A, Fos-Galve P (2006) Composite resins. A review of the materials and clinical indications. Med Oral Patol Oral Cir Bucal 11:E215–20Google Scholar
  26. Hickel R, Kunzelmann KH (1999) Glasionomer- und Kompomerfüllung, in: Praxis der Zahnheilkunde Band 2, Kariologie und Füllungstherapie, Urban & Schwarzenberg Verlag München, pp 155–172Google Scholar
  27. Hill RG, Wilson AD (1988) Some structural aspects of glasses used in ionomer cements. Glass Technol 29:150–188Google Scholar
  28. Höglund C, van Dijken J, Olofsson AL (1992) A clinical evaluation of adhesively luted ceramic inlays. A two year follow-up study. Swed Dent J 16:169–171PubMedPubMedCentralGoogle Scholar
  29. Höland W, Schweiger M, Frank M, Rheinberger V (2000) A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J Biomed Mater Res 53:297–303CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ikemura K, Tay FR, Kouro Y, Endo T, Yoshiyama M, Miyai K, Pashley DH (2003) Optimizing filler content in an adhesive system containing pre-reacted glass-ionomer fillers. Dent Mater 19:137–146CrossRefPubMedPubMedCentralGoogle Scholar
  31. Inokoshi S, Willems G, Van Meerbeek B, Lambrechts P, Braem M, Vanherle G (1993) Dual-cure luting composites: Part I: filler particle distribution. J Oral Rehabil 20:133–146CrossRefPubMedPubMedCentralGoogle Scholar
  32. Inoue M, Finger WJ, Mueller M (1994) Effect of filler content of restorative resins on retentive strength to acid-conditioned enamel. Am J Dent 7:161–166PubMedPubMedCentralGoogle Scholar
  33. Inoue S, Van Meerbeek B, Vargas M, Lamprechts P, Vanherle G (1999) Adhesion mechanism of self-etching adhesives. Advanced Adhesive Dentistry Proceedings book. 3rd International Kuraray Symposium Granada. Kuraray Europe GmbH, Medical Division, pp 131–148Google Scholar
  34. Joiner A, Weader E, Cox TF (2004) The measurement of enamel wear of two toothpastes. Oral Health Prev Dent 2:383–388PubMedPubMedCentralGoogle Scholar
  35. Kent BE, Lewis BG, Wilson AD (1973) The properties of a glass ionomer cement. Br Dent J 135:322–326CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kim KH, Ong JL, Okuno O (2002) The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent 87:642–649CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kwon YH, Kwon TY, Ong JL, Kim KH (2002) Light-polymerized compomers: coefficient of thermal expansion and microhardness. J Prosthet Dent 88:396–401CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lee YK, Pinzon LM, O'Keefe KL, Powers JM (2006) Effect of filler addition on the bonding parameters of dentin bonding adhesives bonded to human dentin. Am J Dent 19:23–27PubMedPubMedCentralGoogle Scholar
  39. Li Q, Jepsen S, Albers HK, Eberhard J (2006) Flowable materials as an intermediate layer could improve the marginal and internal adaptation of composite restorations in Class-V-cavities. Dent Mater 22:250–257CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lim BS, Ferracane JL, Condon JR, Adey JD (2002) Effect of filler fraction and filler surface treatment on wear of microfilled composites. Dent Mater 18:1–11CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lin CT, Lee SY, Keh ES, Dong DR, Huang HM, Shih YH (2000) Influence of silanization and filler fraction on aged dental composites. J Oral Rehabil 27:919–926CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lutz F, Phillips RW (1983) A classification and evaluation of composite resin systems. J Prosthet Dent 50:480–488CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mackert JR Jr, Butts MB, Fairhurst CW (1996) The effect of the leucite transformation on dental porcelain expansion. Dent Mater 2:32–36CrossRefGoogle Scholar
  44. Manhart J, Chen H, Hamm G, Hickel R (2004) Buonocore Memorial Lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper Dent 29:481–508PubMedPubMedCentralGoogle Scholar
  45. Martin R, Paul SJ, Luthy H, Scharer P (1997) Dentin bond strength of Dyract Cem. Am J Dent 10:27–31PubMedPubMedCentralGoogle Scholar
  46. Matinlinna JP, Vallittu PK (2007) Bonding of resin composites to etchable ceramic surfaces – an insight review of the chemical aspects on surface conditioning. J Oral Rehabil 34:622–630CrossRefPubMedPubMedCentralGoogle Scholar
  47. McLean JW, Hughes TH (1965) The reinforcement of dental porcelain with ceramic oxides. Br Dent J 119:251–267PubMedPubMedCentralGoogle Scholar
  48. McLean JW, Nicholson JW, Wilson AD (1994) Proposed nomenclature for glass-ionomer dental cements and related materials. Quintessence Int 25:587–9PubMedPubMedCentralGoogle Scholar
  49. Mehl A, Kunzelmann KH, Folwaczny M, Hickel R (2004) Stabilization effects of CAD/CAM ceramic restorations in extended MOD cavities. J Adhes Dent 6:239–245PubMedPubMedCentralGoogle Scholar
  50. Mitra SB, Wu D, Holmes BN (2003) An application of nanotechnology in advanced dental materials. J Am Dent Assoc 134:1382–1390CrossRefPubMedPubMedCentralGoogle Scholar
  51. Moodley D, Grobler SR (2003) Compomers: adhesion and setting reactions. SADJ 58:21, 24–28Google Scholar
  52. Moore C, Addy M (2005) Wear of dentine in vitro by toothpaste abrasives and detergents alone and combined. J Clin Periondontol 32:1242–1246CrossRefGoogle Scholar
  53. Müller H, Olsson S, Söderholm KJ (1997) The effect of comonomer composition, silane heating, and filler type on aqueous TEGDMA leachability in model resin composites. Eur J Oral Sci 105:362–368CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nicholson JW, Brookman PJ, Lacy OM, Wilson AD (1988) Fourier transform infrared spectroscopic study of the role of tartaric acid in glass-ionomer dental cements. J Dent Res 67:1451–1454CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nunes MF, Swift EJ, Perdigao J (2001) Effects of adhesive composition on microtensile bond strength to human dentin. Am J Dent 14:340–343PubMedPubMedCentralGoogle Scholar
  56. Özcan M, Barbosa SH, Melo RM, Galhano GA, Bottino MA (2007) Effect of surface conditioning methods on the microtensile bond strength of resin composite to composite after aging conditions. Dent Mater 10:1276–1282CrossRefGoogle Scholar
  57. Peutzfeldt A (1995) Dual-cure resin cements: in vitro wear and effect of quantity of remaining double bonds, filler volume, and light curing. Acta Odontol Scand 53:29–34CrossRefPubMedPubMedCentralGoogle Scholar
  58. Phillips RW (1991) Skinner's science of dental materials, 9th edition. Philadelphia: WB Saunders, pp 215–48Google Scholar
  59. Ruse ND (1999) What is a “compomer”? J Can Dent Assoc 65:500–504PubMedPubMedCentralGoogle Scholar
  60. Sabbagh J, Ryelandt L, Bacherius L, Biebuyck JJ, Vreven J, Lambrechts P, Leloup G (2004) Characterization of the inorganic fraction of resin composites. J Oral Rehabil 31:1090–1101CrossRefPubMedPubMedCentralGoogle Scholar
  61. Schulze KA, Zaman AA, Söderholm KJ (2003) Effect of filler fraction on strength, viscosity and porosity of experimental compomer materials. J Dent 31:373–382CrossRefPubMedPubMedCentralGoogle Scholar
  62. Schwarze T (2004) Mineral Trioxide Aggregate (MTA) – Eine Literaturübersicht, Endodontie 13:211–221Google Scholar
  63. Shaw AJ, Carrick T, McCabe JF (1998) Fluoride release from glass-ionomer and compomer restorative materials: 6-month data. J Dent 26:355–359CrossRefPubMedPubMedCentralGoogle Scholar
  64. Suzuki S, Leinfelder KF, Kawai K, Tsuchitani Y (1995) Effect of particle variation on wear rates of posterior composites. Am J Dent 8:173–178PubMedPubMedCentralGoogle Scholar
  65. Tay FR, Moulding KM, Pashley DH (1999) Distribution of nanofillers from a simplified-step adhesive in acid-conditioned dentin. J Adhes Dent 1:103–117PubMedPubMedCentralGoogle Scholar
  66. Tay FR, Pashley EL, Huang C, Hashimoto M, Sano H, Smales RJ, Pashley DH (2001) The glass-ionomer phase in resin-based restorative materials. J Dent Res 80:1808–1812CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tjandrawinata R, Irie M, Yoshida Y, Suzuki K (2004) Effect of adding spherical silica filler on phys-ico-mechanical properties of resin modified glass-ionomer cement. Dent Mater J 23:146–154CrossRefPubMedPubMedCentralGoogle Scholar
  68. Torabinejad M, Hong CU, Pitt Ford TR (1995) Physical properties of a new root end filling material. J Endod 21:349–353CrossRefPubMedPubMedCentralGoogle Scholar
  69. Torii Y, Itou K, Itota T, Hama K, Konishi N, Nagamine M, Inoue K (1999) Influence of filler content and gap dimension on wear resistance of resin composite luting cements around a CAD/CAM ceramic inlay restoration. Dent Mater J 18: 453–461CrossRefPubMedPubMedCentralGoogle Scholar
  70. Van Dijken JW, Wing KR, Ruyter IE (1989) An evaluation of the radiopacity of composite restorative materials used in Class I and Class II cavities. Acta Odontol Scand 4: 401–407CrossRefGoogle Scholar
  71. Van Meerbeek B, Inokoshi S, Davidson CL, De Gee AJ, Lambrechts P, Braem M, Vanherle G (1994) Dual cure luting composites – Part II: clinically related properties. J Oral Rehabil 21:57–66CrossRefPubMedPubMedCentralGoogle Scholar
  72. Van Meerbeek B, De Munck, Yoshida Y, Inoue S, Vargas M, Vijay P, Van Landuyt K, Labrechts P, Vanherle G (2003) Buonocore Memorial Lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent 28-3:215–235Google Scholar
  73. Van Noort R (2002) Dental Ceramics. In: Van Noort R (ed) Introduction to Dental Materials, 2nd edition. St Louis: Mosby, pp 231–246Google Scholar
  74. Wang Y, Spencer P (2005) Hybridization efficiency of the adhesive/dentin interface with wet bonding. J Dent Res 82:141–145CrossRefGoogle Scholar
  75. Willems G, Lambrechts P, Braem M, Celis JP, Vanherle G (1992) A classification of dental composites according to their morphological and mechanical characteristics. Dent Mater 8:310–319CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A.-K. Lührs
    • 1
  • Werner Geurtsen
    • 1
  1. 1.Department of Conservative DentistryPeriodontology & Preventive Dentistry, Medical University HannoverHannoverGermany

Personalised recommendations