Advertisement

Optical and Nonlinear Optical Properties of Sea Glass Sponge Spicules

  • Yu. N. Kulchin
  • A. V. Bezverbny
  • O. A. Bukin
  • S. S. Voznesensky
  • A. N. Galkina
  • A. L. Drozdov
  • I. G. Nagorny
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 47)

Abstract

Originating in nature, the combination of spongin protein with silicon dioxide extracted from seawater by silicatein protein presents a natural nanocomposite material of unique optical and mechanical properties. Mechanically, it combines the elasticity of protein with the flexibility and durability of silica. The light propagation inside spicules of glass sponges is of substantial interest for developing novel elements for photonics applications. The glass sponge spicules have remarkable light guiding properties. Our experimental research on passing laser pulses through spicules of Hyalonema sieboldi and Pheronema sp. reveals a concentration of guided light in the paraxial region. The multi-layer cladding of glass sponge spicules produced by nature has an obvious analogy with some contemporary artificial microstructured optical fibers. Our researches have shown that the core diameter and cladding layers thickness of the spicules of H. sieboldi and Pheronema sp. glass sponges are appropriate for causing photonic bandgaps in the infrared, visible, and ultraviolet wavelength regions. This enables singlemode waveguide and Bragg light propagation regimes in the spicules and provides exciting prospects of using them for the development of fundamentally new integrated optical elements based on peculiar waveguide properties of such structures, e.g., single-way waveguides (optical diodes) with increased mode field diameter and unique frequency and dispersion characteristics. Also, we have investigated the dynamics of propagation of intensive ultra-short pulses with durations T0 < 40 fs through various patterns of spicules. Comparative analysis of the spectra of the output signals has shown that chromatic dispersion in spicules is considerably reduced, which can be explained by waveguide dispersion prevailing over material dispersion because of the multilayer structure of the cladding.

Keywords

Nonlinear Optical Property Chromatic Dispersion Leaky Mode Microstructured Optical Fiber Glass Sponge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal G.P. (2001) Nonlinear fiber optics. Academic, San Diego, CAGoogle Scholar
  2. Aizenberg J., Sundar V.C., Yablon A.D., Weaver J.C., Chen G. (2004) Biological glass fibers: correlation between optical and structural properties. Proceedings of the National Academy of Sciences of the USA 10: 3358–3363Google Scholar
  3. Aizenberg J., Weaver J.C., Thanawala M.S., Sundar V.C., Morse D.E., Fratzl P. (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309: 275–278PubMedGoogle Scholar
  4. Apolonski A., Povazay B., Unterhuber A., Drexler W., Wadsworth W.J., Knight J.C., Russell P.S.J. (2002) Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses. Journal of Optical Society of America B 19: 2165–2170Google Scholar
  5. Argyros A. (2002) Guided modes and loss in Bragg fibres. Optics Express 10: 1411–1417PubMedGoogle Scholar
  6. Bateman H., Erdelyi A. (1953) Higher transcendental functions, Vol. 2. McGraw-Hill, New YorkGoogle Scholar
  7. Born M., Wolf E. (2005) Principles of optics. Cambridge University Press, CambridgeGoogle Scholar
  8. Boyd R.W. (2003) Nonlinear optics. Academic Press, San Diego, CAGoogle Scholar
  9. Drozdov A.L. (2005) Biology for physicists and chemists. Far Eastern National University Press, Vladivostok (in Russian)Google Scholar
  10. Gaeta A.L. (2000) Catastrophic collapse of ultrashort pulses. Physical Review Letters 84: 3582–3585PubMedGoogle Scholar
  11. Gorelik V.S. (2007) Optics of globular photonic crystals. Quantum Electronics 37: 409–432Google Scholar
  12. Hartl I., Li X.D., Chudoba C., Ghanta R.K., Ko T.H., Fujimoto J.G., Ranka J.K., Windeler R.S. (2001) Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber. Optics Letters 26: 608–610PubMedGoogle Scholar
  13. Holzwarth R., Udem T., Hansch T.W., Knight J.C., Wadsworth W.J., Russell P.S.J. (2000) Optical frequency synthesizer for precision spectroscopy. Physical Review Letters 85: 2264–2267PubMedGoogle Scholar
  14. Ibanescu M., Johnson S.G., Soljačić M., Joannopoulos J.D., Fink Y., Weisberg O., Engeness T.D., Jacobs S.A., Skorobogatiy M. (2003) Analysis of mode structure in hollow dielectric waveguide fibers. Physical Review E 67: 046608-1–046608-8Google Scholar
  15. Joannopoulos J.D., Meade R.D., Winn J.N. (1995) Photonic crystals: molding the flow of light. Princeton University Press, Princeton, NJGoogle Scholar
  16. Johnson S.G., Ibanescu M., Skorobogatiy M., Weisberg O., Engeness T.D., Soljačić M., Jacobs S.A., Joannopoulos J.D., Fink Y. (2001) Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Optics Express 9: 748–779PubMedGoogle Scholar
  17. Kodama Y. , Hasegawa A. (1987) Nonlinear pulse propagation in a monomode dielectric guide. IEEE Journal of Quantum Electronics 23: 510–524Google Scholar
  18. Konorov S.O., Kolevatova O.A., Fedotov A.B., Serebryannikov E.E., Sidorov-Biryukov D.A., Mikhailova J.M., Naumov A.N., Beloglazov V.I., Skibina N.B., Mel'nikov L.A., Shcherbakov A.V., Zheltikov A.M. (2003) Waveguide modes of electromagnetic radiation in hollow-core microstructure and photonic-crystal fibers Journal of Experimental and Theoretical Physics 96: 857–869Google Scholar
  19. Kulchin Yu.N., Voznesensky S.S. (2007) (in Russian) In: Kulchin Yu.N. (ed) Selected works on “Promising Trends on Nanotechnology Development in the Far East of Russia”. Dalnauka, Vladivostok, pp. 10–42Google Scholar
  20. Kulchin Yu.N., Voznesensky S.S., Bukin O.A., Bagaev S.N., Pestriakov E.V. (2006) Optical Properties of Natural Biominerals-the Spicules of the Glass Sponges. Optical Memory and Neural Networks (Information Optics) 16: 189–197Google Scholar
  21. Kulchin Yu.N., Bukin O.A., Voznesensky S.S., Galkina A.N., Gnedenkov S.V., Drozdov A.L., Kuryavy V.G., Maltseva T.L., Sinebruchov S.L., Therednichenko A.I. (2007a) Biological species of fiberoptic waveguides. “Nonlinear Waves” – 2006, Nizniy Novgorod, IAP RAS Press, pp. 548–559Google Scholar
  22. Kulchin Yu.N., Voznesensky S.S., Galkina A.N., Gnedenkov S.V., Drozdov A.L. (2007b) Bulletin of Far Eastern Branch of RAS 1: 27–41 (in Russian)Google Scholar
  23. Kulchin Yu.N., Bukin O.A., Voznesensky S.S., Galkina A.N., Gnedenkov S.V., Drozdov A.L., Kuryavy V.G., Maltseva T.L., Nagorny I.G., Sinebruhov S.L., Therednichenko A.I. (2008) Fiber-optic waveguides on the base of natural biominerals – siliceous spicules of sea sponges. Quantum Electronics 38: 51–55Google Scholar
  24. Marcuse D. (1974) Theory of dielectric optical waveguides. Academic, New YorkGoogle Scholar
  25. Maslov D.V, Ostroumov E.E., Fadeev V. V. (2006) Saturation fluorimetry of complex organic compounds with a high local concentration of fluorophores (by the example of phytoplankton). Quantum Electronics 36: 163–168Google Scholar
  26. Müller W.E.G., Wendt K., Geppert Ch., Wiens M., Reiber A., Schröder H.C. (2006) Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi. Biosensors and Bioelectronics 21: 1149–1155PubMedGoogle Scholar
  27. Müller W.E.G., Eckert C., Kropf K., Wang X., Schloßmacher U., Seckert C., Wolf S.E., Tremel W., Schröder H.C. (2007a) Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies. Cell and Tissue Research 329: 363–378PubMedGoogle Scholar
  28. Müller W.E.C., Wang X., Belikov S.I., Tremel W., Schloßmacher U., Natoli A., Brandt D., Boreiko A., Tahir M.N., Muller I.M., Schröder H.C. (2007b) Formation of siliceous spicules in demosponges: example suberites domuncula. In: Baeuerlein E. (ed) Handbook of biominer-alization. Biological aspects and structure formation. Wiley-VCH, Weinheim, pp. 59–82Google Scholar
  29. Müller W.E.G., Wang X., Kropf K., Ushijima H., Geurtsen W., Eckert C., Tahir, M.N., Tremel W., Boreiko A., Schloßmacher U., Li J., Schröder H.C. (2008a) Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. Journal of Structural Biology 161: 188–203PubMedGoogle Scholar
  30. Müller W.E.G., Boreiko A., Schloßmacher U., Wang X., Eckert C., Kropf K., Li J., Schröder H.C. (2008b) Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni. The Journal of Experimental Biology 211: 300–309PubMedGoogle Scholar
  31. Müller W.E.G., Schloßmacher U., Wang X., Boreiko A., Brandt D., Wolf S.E., Tremel W., Schröder H.C. (2008c) Poly(silicate)-metabolizing silicatein in siliceous spicules and sili-casomes of demosponges comprises dual enzymatic activities (silica polymerase and silica esterase). FEBS Journal 275: 362–370PubMedGoogle Scholar
  32. Samsonov G.V. (1978) Physical and chemical properties of oxides. Metalurgia Press, Moscow (in Russian)Google Scholar
  33. Schröder H.C., Brandt D., Schloßmacher U., Wang X., Tahir M.N., Tremel W., Belikov S.I., Müller W.E.G. (2007) Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften 94: 339–359PubMedGoogle Scholar
  34. Schröder H.C., Wang X., Tremel W., Ushijima H., Müller W.E.G. (2008) Biofabrication of biosilica-glass by living organisms. Natural Product Report 25: 455–474Google Scholar
  35. Smirnov S.V., Ania-Castanon J.D., Ellingham T.J., Kobtsev S.M., Kukarin S., Turitsyn S.K. (2006) Optical spectral broadening and supercontinuum generation in telecom applications. Optical Fiber Technology 12: 122–147Google Scholar
  36. Solimeno S., Crosignani B., Di Porto P. (1986) Guiding, Diffraction, and Confinement of Optical Radiation. Academic, San Diego, CAGoogle Scholar
  37. Sundar V.C., Yablon A.D., Grazul J.L., Ilan M., Aizenberg J. (2003) Fiber-optical features of a glass sponge. Nature 424: 899–900PubMedGoogle Scholar
  38. Uriz M.-J., Turon X., Becerro M.A., Agell G. (2003) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Microscopy Research and Technique 62: 279–299PubMedGoogle Scholar
  39. Vienne G., Xu Y., Jakobsen Ch., Deyerl H.-J., Jensen J.B., Sorensen T., Hansen T.P., Huang Y., Terrel M., Lee R.K., Mortensen N.A., Broeng J., Simonsen H., Bjarklev A. and Yariv A. (2004) Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-sup-ports. Optics Express 12: 3500–3508PubMedGoogle Scholar
  40. Yariv A., Yeh P. (1984) Optical waves in crystals. Wiley, New YorkGoogle Scholar
  41. Yeh P., Yariv A., Hong C.S. (1977) Electromagnetic propagation in periodic stratified media. I. General theory. Journal of Optical Society of America 67: 423–438Google Scholar
  42. Yeh P., Yariv A., Marom E. (1978) Theory of Bragg fiber. Journal of Optical Society of America 68: 1196–1201Google Scholar
  43. Zheltikov A.M. (2004) Nonlinear optics of microstructure fibers. Physics-Uspekhi 47: 69–98Google Scholar
  44. Zheltikov A.M. (2007) Microstructure optical fibers for a new generation of fiber-optic sources and converters of light pulses. Physics-Uspekhi 50: 705–729Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yu. N. Kulchin
    • 1
  • A. V. Bezverbny
    • 1
  • O. A. Bukin
    • 1
  • S. S. Voznesensky
    • 1
  • A. N. Galkina
    • 1
  • A. L. Drozdov
    • 2
  • I. G. Nagorny
    • 1
  1. 1.Institute for Automation and Control Processes of Far Eastern Branch of RASVladivostokRussia
  2. 2.Institute of Marine Biology of Far Eastern Branch of RASVladivostokRussia

Personalised recommendations