Advertisement

Silicatein: Nanobiotechnological and Biomedical Applications

  • Heinz C. Schröder
  • Ute Schloßmacher
  • Alexandra Boreiko
  • Filipe Natalio
  • Malgorzata Baranowska
  • David Brandt
  • Xiaohong Wang
  • Wolfgang Tremel
  • Matthias Wiens
  • Werner E. G. Müller
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 47)

Abstract

Silica-based materials are used in many high-tech products including microelectronics, optoelectronics, and catalysts. Siliceous sponges (Demospongiae and Hexactinellida) are unique in their ability to synthesize silica enzymatically. We have cloned the silica-forming enzymes, silicateins, from both demosponges (marine and freshwater sponges) and hexactinellid sponges. The recombinant enzymes allow the synthesis of silica under environmentally benign ambient conditions, while the technical (chemical) production of silica commonly requires high temperatures and pressures, and extremes of pH. Silicateins can be used for the fabrication of highly-ordered inorganic–organic composite materials with defined optical, electrical, and mechanical properties. The simple self-assembly properties of silicateins which are able to form silica and other metal oxides in aqueous solution allow the development of novel products in nano(bio)technology, medicine, and dentistry.

Keywords

Marine Sponge Gallium Oxide Siliceous Sponge Freshwater Sponge Axial Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizenberg J, Sundar V, Yablon AD, Weaver JC, Chen G (2004) Biological glass fibers: correlation between optical and structural properties. Proc Natl Acad Sci USA 101:3358–3363PubMedCrossRefGoogle Scholar
  2. Avnir D, Kaufman VR (1987) Alcohol is an unnecessary additive in the silicon alkoxide sol-gel process. J Non-Cryst Solids 192:180–182CrossRefGoogle Scholar
  3. Ball RSW (1894) The possibility of life in other worlds. Fortnightly Rev 78:676Google Scholar
  4. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305CrossRefGoogle Scholar
  5. Belikov SI, Kaluzhnaya OV, Schröder HC, Krasko A, Müller IM, Müller WEG (2005) Expression of silicatein in spicules from the Baikalian sponge Lubomirskia baicalensis. Cell Biol Int 29:943–951PubMedCrossRefGoogle Scholar
  6. Bernard A, Renault JP, Michel B, Bosshard HR, Delamarche E (2000) Microcontact printing of proteins. Adv Mater 12:1067–1070CrossRefGoogle Scholar
  7. Bhatia RB, Brinker CJ, Gupta AK, Singh AK (2000) Aqueous sol-gel process for protein encapsulation. Chem Mater 12:2434–2441CrossRefGoogle Scholar
  8. Brinker CJ, Scherrer G (1990) Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Boston, MA: AcademicGoogle Scholar
  9. Cairns-Smith AG (1968) An approach to a blueprint for a primitive organism. In: Waddington CH (ed.). Towards a Theoretical Biology, vol 1. Edinburgh: Edinburgh University Press, pp 57–66Google Scholar
  10. Cairns-Smith AG (1982) Genetic Takeover and the Mineral Origins of Life. Cambridge: Cambridge University PressGoogle Scholar
  11. Cairns-Smith AG (2008) Chemistry and the missing era of evolution. Chemistry 14:3830–3839PubMedCrossRefGoogle Scholar
  12. Carlisle EM (1978) Essentiality and function of silicon. In: Bendz G, Lingvist I (eds) Biochemistry of Silicon and Related Problems. NewYork: Plenum, pp 231–253Google Scholar
  13. Cattaneo-Vietti R, Bavestrello G, Cerrano C, Sarà A, Benatti U, Giovine M, Gaino E (1996) Optical fibres in an Antarctic sponge. Nature 383:397–398CrossRefGoogle Scholar
  14. Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365PubMedCrossRefGoogle Scholar
  15. Coradin T, Livage J (2007) Aqueous silicates in biological sol-gel applications: new perspectives for old precursors. Acc Chem Res. 40:819–826PubMedCrossRefGoogle Scholar
  16. Eckert C, Schröder HC, Brandt D, Perovic-Ottstadt S, Müller WEG (2006) A histochemical and electron microscopic analysis of the spiculogenesis in the demosponge Suberites domuncula. J Histochem Cytochem 54:1031–1040PubMedCrossRefGoogle Scholar
  17. Funayama N, Nakatsukasa M, Kuraku S, Takechi K, Dohi M, Iwabe N, Miyata T, Agata K (2005). Isolation of Ef silicatein and Ef lectin as molecular markers for sclerocytes and cells involved in innate immunity in the freshwater sponge Ephydatia fluviatilis. Zool Sci 22:1113–1122PubMedCrossRefGoogle Scholar
  18. Haldane JBS (1928) Possible Worlds and Other Essays. Harper & Brothers, New York/London; Chatto & Windus 1937 edition, Transaction Publishers 2001Google Scholar
  19. Hench LL, Wilson JW (1984) Surface-active biomaterials. Science 226:630–636PubMedCrossRefGoogle Scholar
  20. Hildebrandt M, Wetherbee R (2003) Components and control of silicification in diatoms. Prog Mol Subcell Biol 33:11–57Google Scholar
  21. Iler RK (1979) The Chemistry of Silica. Wiley, New YorkGoogle Scholar
  22. Jugdaohsingh R, Tucker KL, Qiao N, Cupples LA, Kiel DP, Powell JJ (2004) Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Miner Res 19:297–307PubMedCrossRefGoogle Scholar
  23. Kaluzhnaya OV, Belikov SI, Schröder HC, Wiens M, Giovine M, Krasko A, Müller IM, Müller WEG (2005) Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part II. Molecular biological studies. Naturwissenschaften 92:134–138PubMedCrossRefGoogle Scholar
  24. Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108CrossRefGoogle Scholar
  25. Kisailus D, Choi JH, Weaver JC, Yang W, Morse DE (2005) Enzymatic synthesis and nanostruc-tural control of gallium oxide at low temperature. Adv Mater 17:314–318CrossRefGoogle Scholar
  26. Krasko A, Gamulin V, Seack J, Steffen R, Schröder HC, Müller WEG (1997) Cathepsin, a major protease of the marine sponge Geodia cydonium: purification of the enzyme and molecular cloning of cDNA. Mol Mar Biol Biotechnol 6:296–307PubMedGoogle Scholar
  27. Krasko A, Lorenz B, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of sili-catein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887PubMedCrossRefGoogle Scholar
  28. Lange B, Metz N, Tahir MN, Fleischhaker F, Theato P, Schröder HC, Müller WEG, Tremel W, Zentel R (2007) Functional polymer-opals from core-shell colloids. Macromol Rapid Commun 28:1987–1994CrossRefGoogle Scholar
  29. Lin Q, Gourdon D, Sun C, Holten-Andersen N, Anderson TH, Waite JH, Israelachvili JN (2007) Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc Natl Acad Sci USA 104:3782–3786PubMedCrossRefGoogle Scholar
  30. Liu DM, Chen JW (1999) Encapsulation of protein molecules in transparent porous silica matrices via an aqueous colloidal sol-gel process. Acta Mater 47:4535–4544CrossRefGoogle Scholar
  31. Müller WEG, Zahn, RK, Schmid K (1972) The adhesive behaviour in Cuvierian tubules of Holothuria forskali: biochemical and biophysical investigations. Cytobiologie 5:335–351Google Scholar
  32. Müller WEG, Krasko A, Le Pennec G, Schröder HC (2003a) Biochemistry and cell biology of silica formation in sponges. Microsc Res Tech 62:368–377CrossRefGoogle Scholar
  33. Müller WEG, Krasko A, Le Pennec G, Steffen R, Wiens M, Ammar MSA, Müller IM, Schröder HC (2003b) Molecular mechanism of spicule formation in the demosponge Suberites domuncula: silicatein – collagen – myotrophin. Prog Mol Subcell Biol 33:195–221Google Scholar
  34. Müller WEG, Schröder HC, Lorenz B, Krasko A (2004) Silicatein-mediated synthesis of amorphous silicates and siloxanes and use thereof. European Patent No. EP1320624Google Scholar
  35. Müller WEG, Borejko A, Brandt D, Osinga R, Ushijima H, Hamer B, Krasko A, Xupeng C, Müller IM, Schröder HC (2005a) Selenium affects biosilica formation in the demosponge Suberites domuncula: effect on gene expression and spicule formation. FEBS J 272:3838–3852CrossRefGoogle Scholar
  36. Müller WEG, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005b) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res 321:285–297CrossRefGoogle Scholar
  37. Müller WEG, Belikov SI, Schröder HC (2006a) Science – First Hand 3:26–35Google Scholar
  38. Müller WEG, Belikov SI, Tremel W, Perry CC, Gieskes WWC, Boreiko A, Schröder HC (2006b) Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37:107–120CrossRefGoogle Scholar
  39. Müller WEG, Geurtsen WK, Schröder HC (2006c) Biosilica-adhesive protein nanocomposite materials: synthesis and application in dentistry. US Patent Application No. US60/839,601Google Scholar
  40. Müller WEG, Schröder HC, Wrede P, Kaluzhnaya OV, Belikov SI (2006d) Speciation of sponges in Baikal-Tuva region: an outline. J Zool Syst Evol Res 44:105–117CrossRefGoogle Scholar
  41. Müller WEG, Wendt K, Geppert C, Wiens M, Reiber A, Schröder HC (2006e) Novel photore-ception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi. Biosens Bioelectron 21:1149–1155CrossRefGoogle Scholar
  42. Müller WEG, Eckert C, Kropf K, Wang X, Schloßmacher U, Seckert C, Wolf SE, Tremel W, Schröder HC (2007a) Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies. Cell Tissue Res 329:363–378CrossRefGoogle Scholar
  43. Müller WEG, Boreiko A, Schloßmacher U, Wang X, Tahir MN, Tremel W, Brandt D, Kaandorp JA, Schröder HC (2007b) Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. Biomaterials 28:4501–4511CrossRefGoogle Scholar
  44. Müller WEG, Boreiko A, Wang X, Belikov SI, Wiens M, Grebenjuk VA, Schloßmacher U, Schröder HC (2007c) Silicateins, the major biosilica forming enzymes present in demos-ponges: protein analysis and phylogenetic relationship. Gene 395:62–71CrossRefGoogle Scholar
  45. Müller WEG, Boreiko A, Wang X, Krasko A, Geurtsen W, Custódio MR, Winkler T, Lukić-Bilela L, Link T, Schröder HC (2007d) Morphogenetic activity of silica and bio-silica on the expression of genes controlling biomineralization using SaOS-2 cells. Calcif Tissue Int 81:382–393CrossRefGoogle Scholar
  46. Müller WEG, Schröder HC, Krasko A (2007e) Decomposition and modification of silicate and silicone by silicase and use of the reversible enzyme. European Patent No. EP1546319Google Scholar
  47. Müller WEG, Li J, Schröder HC, Qiao L, Wang X (2007f) The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review. Biogeosciences 4:219–232CrossRefGoogle Scholar
  48. Müller WEG, Schloßmacher U, Eckert C, Krasko A, Boreiko A, Ushijima H, Wolf SE, Tremel W, Müller IM, Schröder HC (2007g) Analysis of the axial filament in spicules of the demosponge Geodia cydonium: different silicatein composition in microscleres (asters) and megascleres (oxeas and triaenes). Eur J Cell Biol 86:473–487CrossRefGoogle Scholar
  49. Müller WEG, Schröder HC, Lorenz B, Krasko A (2007h) Silicatein-mediated synthesis of amorphous silicates and siloxanes and use thereof. United States Patent No. US 7,169,589 B2Google Scholar
  50. Müller WEG, Wang X, Belikov SI, Tremel W, Schloßmacher U, Natoli A, Brandt D, Boreiko A, Tahir MN, Müller IM, Schröder HC (2007i) Formation of siliceous spicules in demosponges: example Suberites domuncula. In: Bäuerlein E (ed) Handbook of Biomineralization, vol. 1: Biological Aspects and Structure Formation. Weinheim: Wiley-VCH, pp 59–82CrossRefGoogle Scholar
  51. Müller WEG, Boreiko A, Schloßmacher U, Wang X, Eckert C, Kropf K, Li J, Schröder HC (2008a) Identification of a silicatein (-related) protease in the giant spicules of the deep sea hexactinellid Monorhaphis chuni. J Exp Biol 211:300–309CrossRefGoogle Scholar
  52. Müller WEG, Engel S, Wang X, Wolf SE, Tremel W, Thakur NL, Krasko A, Divekar M, Schröder HC (2008b) Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene. Biomaterials 29:771–779CrossRefGoogle Scholar
  53. Müller WEG, Schloßmacher U, Wang X, Boreiko A, Brandt D, Wolf SE, Tremel W, Schröder HC (2008c) Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of dem-osponges comprises dual enzymatic activities (silica-polymerase and silica-esterase). FEBS J 275:362–370CrossRefGoogle Scholar
  54. Müller WEG, Wang X, Kropf K, Boreiko A, Schloßmacher U, Brandt D, Schröder HC, Wiens M (2008d) Silicatein expression in the hexactinellid Crateromorpha meyeri: the lead marker gene restricted to siliceous sponges. Cell Tissue Res (in press), doi:10.1007/s00441-008-0624-6Google Scholar
  55. Müller WEG, Wang X, Kropf K, Ushijima H, Geurtsen W, Eckert C, Tahir MN, Tremel W, Boreiko A, Schloßmacher U, Li J, Schröder HC (2008e) Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. J Struct Biol 161:188–203CrossRefGoogle Scholar
  56. Murr MM, Morse DE (2005) Fractal intermediates in the self-assembly of silicatein filaments. Proc Natl Acad Sci USA 102:11657–11662PubMedCrossRefGoogle Scholar
  57. Pisignano D, Maruccio G, Mele E, Persano L, Di Benedetto F, Cingolani R (2005) Polymer nanofibers by soft lithography. Appl. Phys Lett 87:123109CrossRefGoogle Scholar
  58. Pozzolini M, Sturla L, Cerrano C, Bavestrello G, Camardella L, Parodi AM, Raheli F, Benatti U, Müller WEG, Giovine M (2004) Molecular cloning of silicatein gene from the marine sponge Petrosia ficiformis (Porifera, Demospongiae) and development of primmorphs as a model for biosilicification studies. Mar Biotechnol 6:594–603PubMedCrossRefGoogle Scholar
  59. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HF, Evans BA, Thompson RP, Powell JJ, Hampson GN (2003) Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32:127–135PubMedCrossRefGoogle Scholar
  60. Reynolds JE (1893) Notes. Section B. Chemistry. Nature 48:477–481CrossRefGoogle Scholar
  61. Schröder HC, Krasko A, Batel R, Skorokhod A, Pahler S, Kruse M, Müller IM, Müller WEG (2000) Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin-related molecule from Suberites domuncula. FASEB J 14:2022–2031PubMedCrossRefGoogle Scholar
  62. Schröder HC, Krasko A, Le Pennec G, Adell T, Wiens M, Hassanein H, Müller IM, Müller WEG (2003) Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. Prog Mol Subcell Biol 33:250–268Google Scholar
  63. Schröder HC, Perović-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller IM, Müller WEG (2004a) Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J 381:665–673CrossRefGoogle Scholar
  64. Schröder HC, Perović-Ottstadt S, Wiens M, Batel R, Müller IM, Müller WEG (2004b) Differentiation capacity of the epithelial cells in the sponge Suberites domuncula. Cell Tissue Res 316:271–280CrossRefGoogle Scholar
  65. Schröder HC, Boreiko O, Krasko A, Reiber A, Schwertner H, Müller WEG (2005a) Mineralisation of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces. J Biomed Mater Res Part B: Appl Biomater 75B:387–392CrossRefGoogle Scholar
  66. Schröder HC, Perović-Ottstadt S, Grebenjuk VA , Engel S, Müller IM, Müller WEG (2005b) Biosilica formation in spicules of the sponge Suberites domuncula: synchronous expression of a gene cluster. Genomics 85:666–678CrossRefGoogle Scholar
  67. Schröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, Müller IM, Müller WEG (2006) Co-expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J Biol Chem 281:12001–12009PubMedCrossRefGoogle Scholar
  68. Schröder HC, Brandt D, Schloßmacher U, Wang X, Tahir MN, Tremel W, Belikov SI, Müller WEG (2007a) Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften 94:339–359CrossRefGoogle Scholar
  69. Schröder HC, Natalio F, Shukoor I, Tremel W, Schloßmacher U, Wang X, Müller WEG (2007b) Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: biological/biochemical studies and chemical/biomimetical confirmation. J Struct Biol 159:325–334CrossRefGoogle Scholar
  70. Schröder HC, Wang X, Tremel W, Ushijima H, Müller WEG (2008) Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 25:455–474PubMedCrossRefGoogle Scholar
  71. Schwarz K, Milne DB (1972) Growth-promoting effects of silicon in rats. Nature 239:333–334PubMedCrossRefGoogle Scholar
  72. Sgarbi N, Pisignano D, Di Benedetto F, Gigli G, Cingolani R, Rinaldi R (2004) Self-assembled extracellular matrix protein networks by microcontact printing. Biomaterials 25:1349–1353PubMedCrossRefGoogle Scholar
  73. Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238PubMedCrossRefGoogle Scholar
  74. Shukoor MI, Natalio F, Ksenofontov V, Tahir MN, Eberhardt M, Theato P, Schröder HC, Müller WEG, Tremel W (2007a) Double-stranded RNA polyinosinic-polycytidylic acid immobilized onto γ-Fe2O3 nanoparticles by using a multifunctional polymeric linker. Small 3:1374–1378CrossRefGoogle Scholar
  75. Shukoor MI, Natalio F, Tahir MN, Ksenofontov V, Therese HA, Theato P, Schröder HC, Müller WEG, Tremel W (2007b) Superparamagnetic γ-Fe2O3 nanoparticles with tailored functionality for protein separation. Chem Commun 2007:4677–4679CrossRefGoogle Scholar
  76. Shukoor MI, Natalio F, Metz N, Glube N, Tahir MN, Therese HA, Ksenofontov V, Theato P, Langguth P, Boissel JP, Schröder HC, Müller WEG, Tremel W (2008a) dsRNA-functionalized multifunctional γ-Fe2O3 nanocrystals: a tool for targeting cell surface receptors. Angew Chem Int Ed Engl 47:4748–4752CrossRefGoogle Scholar
  77. Shukoor MI, Natalio F, Tahir MN, Divekar M, Metz N, Therese HA, Theato P, Ksenofontov V, Schröder HC, Müller WEG, Tremel W (2008b) Multifunctional polymer-derivatized γ-Fe2O3 nanocrystals as a methodology for the biomagnetic separation of recombinant His-tagged proteins. J Magn Magn Mater 320:2339–2344CrossRefGoogle Scholar
  78. Sly WS, Hu PY (1995) Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 64:375–401PubMedCrossRefGoogle Scholar
  79. Sumerel JL, Yang W, Kisailus D, Weaver JC, Choi JH, Morse DE (2003) Biocatalytic structure-directing synthesis of titanium dioxide. Chem Mater 15:4804–4809CrossRefGoogle Scholar
  80. Tahir MN, Théato P, Müller WEG, Schröder HC, Janshoff A, Zhang J, Huth J, Tremel W (2004) Monitoring the formation of biosilica catalysed by histidine-tagged silicatein. Chem Commun 2004:2848–2849CrossRefGoogle Scholar
  81. Tahir MN, Théato P, Müller WEG, Schröder HC, Borejko A, Faiß S, Janshoff A, Huth J, Tremel W (2005) Formation of layered titania and zirconia catalysed by surface-bound silicatein. Chem Commun 28:5533–5535CrossRefGoogle Scholar
  82. Tahir MN, Eberhardt M, Therese HA, Kolb U, Theato P, Müller WEG, Schröder HC, Tremel W (2006) From single molecules to nanoscopically structured functional materials: Au nanoc-rystal growth on TiO2 nanowires controlled by surface bound silicatein. Angew Chem Int Ed 45:4803–4809CrossRefGoogle Scholar
  83. Wang X, Li J, Qiao L, Schröder HC, Eckert C, Kropf K, Wang Y, Feng Q, Müller WEG (2007) Structure and characteristics of giant spicules of the deep sea hexactinellid sponges of the genus Monorhaphis (Hexactinellida: Amphidiscosida: Monorhaphididae). Acta Zool Sinica 53:557–569Google Scholar
  84. Weaver J, Morse DE (2003) Molecular biology of demosponge axial filaments and their roles in biosilification. Micr Res Techn 62:356–367CrossRefGoogle Scholar
  85. Wells HG (1894) The living things that may be. Pall Mall Gazette 58:4Google Scholar
  86. Wiens M, Belikov SI, Kaluzhnaya OV, Krasko A, Schröder HC, Perovic-Ottstadt S, Müller WEG (2006) Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Dev Genes Evol 216:229–242PubMedCrossRefGoogle Scholar
  87. Wiens M, Belikov SI, Kaluzhnaya OV, Adell T, Schröder HC, Perovic-Ottstadt S, Kaandorp JA, Müller WEG (2008) Regional and modular expression of morphogenetic factors in the dem-osponge Lubomirskia baicalensis. Micron 39:447–460PubMedCrossRefGoogle Scholar
  88. Yamamuro T, Hench LL, Wilson J (eds) (1990) Handbook on Bioactive Ceramics, vol I: Bioactive Glasses and Glass-Ceramics. Boca Raton, FL: CRC PressGoogle Scholar
  89. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Heinz C. Schröder
    • 1
  • Ute Schloßmacher
    • 1
  • Alexandra Boreiko
    • 1
  • Filipe Natalio
    • 1
  • Malgorzata Baranowska
    • 1
  • David Brandt
    • 1
  • Xiaohong Wang
    • 2
  • Wolfgang Tremel
    • 2
  • Matthias Wiens
    • 1
  • Werner E. G. Müller
    1. 1.Institut für Physiologische ChemieAbteilung Angewandte Molekularbiologie UniversitätMainzGermany
    2. 2.National Research Center for GeoanalysisBeijingPR China

    Personalised recommendations