Dynamic Route Construction for Mobile Collectors in Wireless Sensor Networks

  • Samer Hanoun
  • Saeid Nahavandi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5314)

Abstract

Wireless sensor networks with mobile data collectors have been recently proposed for extending the sensor network lifetime. Powerful mobile collectors are deployed to patrol the network and approach the static sensors for collecting their data buffers using single hop communication. The route followed by the mobile collector is very crucial for the data collection operation performed in the network and highly impacts the data collection time. This paper presents a practically efficient algorithm for constructing the mobile collector route. The route is constructed dynamically during the network operational time regardless of the sensors data generation rates. The algorithm acts on minimizing the sleeping time and the number of sensors waiting for the arrival of the mobile collector. Simulation results demonstrate that the presented algorithm can effectively reduce the overall data collection time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: A survey. Computer Networks 38, 393–422 (2002)CrossRefGoogle Scholar
  2. 2.
    Culler, D., Estrin, D., Srivastava, M.: Introduction: Overview of sensor networks. IEEE Computer 37, 41–49 (2004)CrossRefGoogle Scholar
  3. 3.
    Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges: Scalable coordination in sensor networks. In: Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, pp. 263–270 (1999)Google Scholar
  4. 4.
    Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications 11, 6–28 (2004)CrossRefGoogle Scholar
  5. 5.
    Wang, Z.M., Basagni, S., Melachrinoudis, E., Petrioli, C.: Exploiting sink mobility for maximizing sensor networks lifetime. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences (2005)Google Scholar
  6. 6.
    Zhao, W., Ammar, M., Zegura, E.: Controlling the mobility of multiple data transport ferries in a delay-tolerant network. In: Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (March 2005)Google Scholar
  7. 7.
    Grossglauser, M., Tse, D.N.C.: Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking 10, 477–486 (2002)CrossRefGoogle Scholar
  8. 8.
    Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: Modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Networks 1, 215–233 (2003)CrossRefGoogle Scholar
  9. 9.
    Jain, S., Shah, R.C., Brunette, W., Borriello, G., Roy, S.: Exploiting mobility for energy efficient data collection in wireless sensor networks. Mobile Networks and Applications 11, 327–339 (2006)CrossRefGoogle Scholar
  10. 10.
    Somasundara, A.A., Kansal, A., Jea, D.D., Estrin, D., Srivastava, M.B.: Controllably mobile infrastructure for low energy embedded networks. IEEE Transactions on Mobile Computing 5, 958–973 (2006)CrossRefGoogle Scholar
  11. 11.
    Kansal, A., Rahimi, M., Estrin, D., Kaiser, W., Pottie, G.J., Srivastava, M.B.: Controlled mobility for sustainable wireless sensor networks. In: Proceedings of the 1st Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (2004)Google Scholar
  12. 12.
    Kansal, A., Somasundara, A.A., Jea, D.D., Srivastava, M.B., Estrin, D.: Intelligent fluid infrastructure for embedded networks. In: Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services (2004)Google Scholar
  13. 13.
    Chakrabarti, A., Sabharwal, A., Aazhang, B.: Using predictable observer mobility for power efficient design of sensor networks. In: 2nd International Workshop on Information Processing in Sensor Networks (2003)Google Scholar
  14. 14.
    Ngai, E.C.H., Lin, J., Lyu, M.R.: Delay-minimized route design for wireless sensor-actuator networks. In: Proceedings of the IEEE Wireless Communications and Networking Conference (2007)Google Scholar
  15. 15.
    Gu, Y., Bozdag, D., Ekici, E., Ozguner, F., Lee, C.: Partitioning based mobile element scheduling in wireless sensor networks. In: Proceedings of the 2nd Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (2005)Google Scholar
  16. 16.
    Somasundara, A.A., Ramamoorthy, A., Srivastava, M.B.: Mobile element scheduling for efficient data collection in wireless sensor networks with dynamic deadlines. In: 25th IEEE International Real-Time Systems Symposium (2004)Google Scholar
  17. 17.
    Bulusu, N., Heidemann, J., Estrin, D.: Gps-less low cost outdoor localization for very small devices. IEEE Personal Communications Magazine 7, 28–34 (2000)CrossRefGoogle Scholar
  18. 18.
    Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R., Shmoys, D.B.: Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons, Chichester (1990)Google Scholar
  19. 19.
    Coremen, T., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. Prentice Hall/MIT Press, Cambrige (2000)Google Scholar
  20. 20.
    Berg, M.D., Kreveld, M.V., Overmars, M., Schwarzkopf, O.: Computational Geometry, Algorithms and Applications. Springer, New York (2002)Google Scholar
  21. 21.
    Held, M., Karp, R.: The traveling-salesman problem and minimum spanning trees: Part ii. Mathematical Programming 1, 6–25 (1971)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications 1, 660–670 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Samer Hanoun
    • 1
  • Saeid Nahavandi
    • 1
  1. 1.Intelligent Systems Research LabDeakin UniversityAustralia

Personalised recommendations