Advertisement

Qualitative Spatial Scene Modeling for Ambient Intelligence Environments

  • Frank Dylla
  • Mehul Bhatt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5314)

Abstract

In ambient intelligence systems, it is necessary to represent and reason about dynamic spatial scenes and configurations. Primarily, the ability to perform predictive and explanatory analyses on the basis of available sensory data is crucial toward serving a useful intelligent function within such environments. In this paper, we present a qualitative model for representing the relevant aspects of these environments in an adequate manner. The model is suited for reasoning about spatial configurations and dynamics in spatial environments. We clarify and elaborate on our ideas with examples grounded in a smart home environment.

Keywords

Smart Home Initial Situation Ambient Intelligence Qualitative Reasoning Ubiquitous Computing Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gottfried, B., Guesgen, H.W., Hübner, S.: Spatiotemporal reasoning for smart homes. In: Designing Smart Homes, pp. 16–34 (2006)Google Scholar
  2. 2.
    Galton, A.: Causal reasoning for alert generation in smart homes. In: Designing Smart Homes, pp. 57–70 (2006)Google Scholar
  3. 3.
    Cohn, A., Hazarika, S.: Qualitative spatial representation and reasoning: An overview. Fundam. Inf. 46(1-2), 1–29 (2001)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: KR 1992. Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference, pp. 165–176. Morgan Kaufmann, San Mateo (1992)Google Scholar
  5. 5.
    Moratz, R.: Representing relative direction as a binary relation of oriented points. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI, Riva del Garda, Italy, pp. 407–411. IOS Press, Amsterdam (2006)Google Scholar
  6. 6.
    Freksa, C.: Qualitative spatial reasoning. In: Mark, D., Frank, A. (eds.) Cognitive and linguistic aspects of geographic space, pp. 361–372. Kluwer, Dordrecht (1991)Google Scholar
  7. 7.
    Freksa, C., Röhrig, R.: Dimensions of qualitative spatial reasoning. In: Carreté, N.P., Singh, M.G. (eds.) Proceedings of the III IMACS International Workshop on Qualitative Reasoning and Decision Technologies – QUARDET 1993, CIMNE Barcelona, pp. 483–492 (1993)Google Scholar
  8. 8.
    Balbiani, P., Osmani, A.: A model for reasoning about topologic relations between cyclic intervals. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) KR 2000: Principles of Knowledge Representation and Reasoning, pp. 378–385. Morgan Kaufmann, San Francisco (2000)Google Scholar
  9. 9.
    Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Frank, A.U., Campari, I., Formentini, U. (eds.) Theories and methods of spatio-temporal reasoning in geographic space, pp. 162–178. Springer, Berlin (1992)Google Scholar
  10. 10.
    Schlieder, C.: Reasoning about ordering. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 341–349. Springer, Heidelberg (1995)Google Scholar
  11. 11.
    Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning. In: Singh, M.G., Travé-Massuyès, L. (eds.) Proceedings of the IMACS Workshop on Decision Support Systems and Qualitative Reasoning, pp. 181–187. North-Holland, Amsterdam (1991)Google Scholar
  12. 12.
    Renz, J., Rauh, R., Knauff, M.: Towards cognitive adequacy of topological spatial relations. In: Spatial Cognition II, Integrating Abstract Theories, Empirical Studies, Formal Methods, and Practical Applications, pp. 184–197. Springer, Heidelberg (2000)Google Scholar
  13. 13.
    Knauff, M., Rauh, R., Renz, J.: A cognitive assessment of topological spatial relations: Results from an empirical investigation. In: Frank, A.U. (ed.) COSIT 1997. LNCS, vol. 1329, pp. 193–206. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Clarke, B.L.: A calculus of individuals based on ‘connection’. Notre Dame Journal of Formal Logic 22(3), 204–218 (1991)CrossRefGoogle Scholar
  15. 15.
    Clarke, B.L.: Individuals and points. Notre Dame Journal of Formal Logic 26(1), 61–75 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Egenhofer, M.J., Franzosa, R.D.: Point Set Topological Relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)CrossRefGoogle Scholar
  17. 17.
    Dylla, F., Wallgrün, J.O.: Qualitative spatial reasoning with conceptual neighborhoods for agent control. Journal of Intelligent and Robotic Systems 48(1), 55–78 (2007)CrossRefGoogle Scholar
  18. 18.
    Lin, F.: Embracing causality in specifying the indirect effects of actions. In: IJCAI, pp. 1985–1993 (1995)Google Scholar
  19. 19.
    Bhatt, M., Loke, S.: Modelling dynamic spatial systems in the situation calculus. Journal of Spatial Cognition and Computation: Special Issue on Spatio-Temporal Reasoning (to appear, 2008)Google Scholar
  20. 20.
    Lin, F., Reiter, R.: State constraints revisited. Journal of Logic and Computation 4, 655–678 (1994)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Frank Dylla
    • 1
  • Mehul Bhatt
    • 1
  1. 1.SFB/TR 8 Spatial CognitionUniversität BremenGermany

Personalised recommendations