Advertisement

A Fuzzy Set Semantics for Qualitative Fluents in the Situation Calculus

  • Alexander Ferrein
  • Stefan Schiffer
  • Gerhard Lakemeyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5314)

Abstract

Specifying the behavior of an intelligent autonomous robot or agent is a non-trivial task. The question is: how can the knowledge of the domain expert be encoded in the agent program? Qualitative representations in general facilitate to express the knowledge of a domain expert. In this paper, we propose a semantics for qualitative fluents in the situation calculus. Our semantics is based on fuzzy sets. Membership functions define to which degree a qualitative fluent belongs to a particular category. Especially intriguing about a fuzzy set semantics for qualitative fluents is that the qualitative ranges may overlap, and a value can, at the same time, fall into several categories.

Keywords

Membership Function Fuzzy Logic Fuzzy System Fuzzy Rule Fuzzy Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - i. Inf. Sci. 8(3), 199–249 (1975)MathSciNetCrossRefGoogle Scholar
  2. 2.
    McCarthy, J.: Situations, Actions and Causal Laws. Technical report, Stanford University (1963)Google Scholar
  3. 3.
    Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic programming language for dynamic domains. J. of Log. Progr. 31(1-3) (1997)Google Scholar
  4. 4.
    Schiffer, S., Ferrein, A., Lakemeyer, G.: Qualitative world models for soccer robots. In: Qualitative Constraint Calculi. Workshop at KI 2006 (2006)Google Scholar
  5. 5.
    Dubois, D., Prade, H.: An introduction to fuzzy systems. Clinica Chimica Acta 270(1), 3–29 (1998)CrossRefGoogle Scholar
  6. 6.
    Bolloju, N.: Formulation of qualitative models using fuzzy logic. Decis. Support Syst. 17(4), 275–298 (1996)CrossRefGoogle Scholar
  7. 7.
    Nordvik, J.P., Smets, P., Magrez, P.: Fuzzy qualitative modeling. In: IMPU 1988, pp. 231–238. Springer, Heidelberg (1988)Google Scholar
  8. 8.
    Dutta, S.: Qualitative spatial reasoning: A semi-quantitative approach using fuzzy logic. In: Buchmann, A., Smith, T.R., Wang, Y.-F., Günther, O. (eds.) SSD 1989. LNCS, vol. 409, pp. 345–364. Springer, Heidelberg (1990)Google Scholar
  9. 9.
    Yen, J., Lee, J.: Fuzzy logic as a basis for specifying imprecise requirements. In: IEEE International Conference on Fuzzy Systems (1993)Google Scholar
  10. 10.
    Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems 1(1) (1993)Google Scholar
  11. 11.
    Tikk, D., Biro, G., Gedeon, T., Koczy, L., Yang, J.D.: Improvements and critique on sugeno’s and yasukawa’s qualitative modeling. IEEE Trans. on Fuzzy Systems 10(5), 596–606 (2002)CrossRefGoogle Scholar
  12. 12.
    Saffiotti, A.: Fuzzy logic in autonomous robotics: behavior coordination. In: Proc. IEEE Int. Conf. on Fuzzy Systems. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  13. 13.
    Liu, H., Brown, D.J., Coghill, G.M.: Fuzzy qualitative robot kinematics. IEEE Transactions on Fuzzy Systems 16(3), 808–822 (2008)CrossRefGoogle Scholar
  14. 14.
    Isermann, R.: On fuzzy logic applications for automatic control, supervision, and fault diagnosis. IEEE Transactions on Systems, Man, and Cybernetics, Part A 28(2), 221–235 (1998)CrossRefGoogle Scholar
  15. 15.
    Zadeh, L.: Knowledge representation in fuzzy logic. IEEE Transaction on Knowledge and Data Engineering 1(1) (1989)Google Scholar
  16. 16.
    Mendel, J.: Fuzzy logic systems for engineering: a tutorial. Proceedings of the IEEE 83(3), 345–377 (1995)CrossRefGoogle Scholar
  17. 17.
    Passino, M., Yurkovich, S.: Fuzzy Control. Addison-Wesley-Longman (1998)Google Scholar
  18. 18.
    Reiter, R.: On knowledge-based programming with sensing in the situation calculus. ACM Transactions on Computational Logic (TOCL) 2(4), 433–457Google Scholar
  19. 19.
    Pirri, F., Reiter, R.: Some contributions to the metatheory of the situation calculus. Journal of the ACM 46(3), 325–361 (1999)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alexander Ferrein
    • 1
  • Stefan Schiffer
    • 1
  • Gerhard Lakemeyer
    • 1
  1. 1.Knowledge-Based Systems GroupRWTH Aachen UniversityAachenGermany

Personalised recommendations