A Fuzzy Set Semantics for Qualitative Fluents in the Situation Calculus

  • Alexander Ferrein
  • Stefan Schiffer
  • Gerhard Lakemeyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5314)

Abstract

Specifying the behavior of an intelligent autonomous robot or agent is a non-trivial task. The question is: how can the knowledge of the domain expert be encoded in the agent program? Qualitative representations in general facilitate to express the knowledge of a domain expert. In this paper, we propose a semantics for qualitative fluents in the situation calculus. Our semantics is based on fuzzy sets. Membership functions define to which degree a qualitative fluent belongs to a particular category. Especially intriguing about a fuzzy set semantics for qualitative fluents is that the qualitative ranges may overlap, and a value can, at the same time, fall into several categories.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - i. Inf. Sci. 8(3), 199–249 (1975)MathSciNetCrossRefGoogle Scholar
  2. 2.
    McCarthy, J.: Situations, Actions and Causal Laws. Technical report, Stanford University (1963)Google Scholar
  3. 3.
    Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic programming language for dynamic domains. J. of Log. Progr. 31(1-3) (1997)Google Scholar
  4. 4.
    Schiffer, S., Ferrein, A., Lakemeyer, G.: Qualitative world models for soccer robots. In: Qualitative Constraint Calculi. Workshop at KI 2006 (2006)Google Scholar
  5. 5.
    Dubois, D., Prade, H.: An introduction to fuzzy systems. Clinica Chimica Acta 270(1), 3–29 (1998)CrossRefGoogle Scholar
  6. 6.
    Bolloju, N.: Formulation of qualitative models using fuzzy logic. Decis. Support Syst. 17(4), 275–298 (1996)CrossRefGoogle Scholar
  7. 7.
    Nordvik, J.P., Smets, P., Magrez, P.: Fuzzy qualitative modeling. In: IMPU 1988, pp. 231–238. Springer, Heidelberg (1988)Google Scholar
  8. 8.
    Dutta, S.: Qualitative spatial reasoning: A semi-quantitative approach using fuzzy logic. In: Buchmann, A., Smith, T.R., Wang, Y.-F., Günther, O. (eds.) SSD 1989. LNCS, vol. 409, pp. 345–364. Springer, Heidelberg (1990)Google Scholar
  9. 9.
    Yen, J., Lee, J.: Fuzzy logic as a basis for specifying imprecise requirements. In: IEEE International Conference on Fuzzy Systems (1993)Google Scholar
  10. 10.
    Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems 1(1) (1993)Google Scholar
  11. 11.
    Tikk, D., Biro, G., Gedeon, T., Koczy, L., Yang, J.D.: Improvements and critique on sugeno’s and yasukawa’s qualitative modeling. IEEE Trans. on Fuzzy Systems 10(5), 596–606 (2002)CrossRefGoogle Scholar
  12. 12.
    Saffiotti, A.: Fuzzy logic in autonomous robotics: behavior coordination. In: Proc. IEEE Int. Conf. on Fuzzy Systems. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  13. 13.
    Liu, H., Brown, D.J., Coghill, G.M.: Fuzzy qualitative robot kinematics. IEEE Transactions on Fuzzy Systems 16(3), 808–822 (2008)CrossRefGoogle Scholar
  14. 14.
    Isermann, R.: On fuzzy logic applications for automatic control, supervision, and fault diagnosis. IEEE Transactions on Systems, Man, and Cybernetics, Part A 28(2), 221–235 (1998)CrossRefGoogle Scholar
  15. 15.
    Zadeh, L.: Knowledge representation in fuzzy logic. IEEE Transaction on Knowledge and Data Engineering 1(1) (1989)Google Scholar
  16. 16.
    Mendel, J.: Fuzzy logic systems for engineering: a tutorial. Proceedings of the IEEE 83(3), 345–377 (1995)CrossRefGoogle Scholar
  17. 17.
    Passino, M., Yurkovich, S.: Fuzzy Control. Addison-Wesley-Longman (1998)Google Scholar
  18. 18.
    Reiter, R.: On knowledge-based programming with sensing in the situation calculus. ACM Transactions on Computational Logic (TOCL) 2(4), 433–457Google Scholar
  19. 19.
    Pirri, F., Reiter, R.: Some contributions to the metatheory of the situation calculus. Journal of the ACM 46(3), 325–361 (1999)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alexander Ferrein
    • 1
  • Stefan Schiffer
    • 1
  • Gerhard Lakemeyer
    • 1
  1. 1.Knowledge-Based Systems GroupRWTH Aachen UniversityAachenGermany

Personalised recommendations