Feature-Based Image Fusion Quality Metrics

  • Mohammed Hossny
  • Saeid Nahavandi
  • Doug Crieghton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5314)

Abstract

Image fusion quality metrics have evolved from image processing quality metrics. They measure the quality of fused images by estimating how much localized information has been transferred from the source images into the fused image. However, this technique assumes that it is actually possible to fuse two images into one without any loss. In practice, some features must be sacrificed and relaxed in both source images. Relaxed features might be very important, like edges, gradients and texture elements. The importance of a certain feature is application dependant. This paper presents a new method for image fusion quality assessment. It depends on estimating how much valuable information has not been transferred.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wald, L.: Some terms of reference in data fusion. IEEE Transaction on Geoscience and Remote Sensing 37, 1190–1193 (1999)CrossRefGoogle Scholar
  2. 2.
    Pohl, C., Genderen, J.: Multisensor image fusion in remote sensing: Concepts, methods and applications. International Journal of Remote Sensing 19, 823–854 (1998)CrossRefGoogle Scholar
  3. 3.
    Li, H., Manjunath, B.S., Mitra, S.K.: Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing 57, 235–245 (1995)CrossRefGoogle Scholar
  4. 4.
    Wald, L.: Data fusion: A conceptual approach for an efficient exploitation of remote sensing images. In: 2nd Conference on Fusion of Earth Data, pp. 17–23 (1998)Google Scholar
  5. 5.
    Wang, Z., Bovik, A., Lu, L.: Why is image quality assessment so difficult? In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. IV–3313–IV–3316 (2002)Google Scholar
  6. 6.
    Xydeas, C., Petrovic, V.: Objective image fusion performance measure. Electronic Letters 36, 308–309 (2000)CrossRefGoogle Scholar
  7. 7.
    Zhang, Z., Blum, R.: On estimating the quality of noisy images. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 2897–2900 (1998)Google Scholar
  8. 8.
    Qu, G., Zhang, D., Yan, P.: Information measure for performance of image fusion. Electronic Letters 38, 313–315 (2002)CrossRefGoogle Scholar
  9. 9.
    Zhao, J., Lagnaiere, R., Liu, Z.: Image fusion algorithm assessment based on feature measurement. In: Proceedings of Innovative Computing, Information and Control, vol. 2, pp. 701–704 (2006)Google Scholar
  10. 10.
    Buntilove, V., Bretschneider, T.: Objective-content dependent quality measures for image fusion of optical data. In: IEEE International Geoscience and Remote Sensing Symposium, vol. 1, pp. 613–616 (2004)Google Scholar
  11. 11.
    Buntilov, V., Bretschneider, T.: A fusion evaluation approach with region relating objective function for multispectral image sharpening. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, vol. 4, pp. 2830–2833 (2005)Google Scholar
  12. 12.
    Chen, Y., Blum, R.: Experimental tests of image fusion for night vision. In: Proceedings of International Conference on Information Fusion, vol. 1 (2005)Google Scholar
  13. 13.
    Wang, Z., Bovik, A.: A universal image quality index. IEEE Signal Processing Letters 9, 81–84 (2002)CrossRefGoogle Scholar
  14. 14.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13, 600–612 (2004)CrossRefGoogle Scholar
  15. 15.
    Piella, G., Heijmans, H.: A new quality metric for image fusion. In: IEEE International Conference on Image Processing, pp. 137–176 (2003)Google Scholar
  16. 16.
    Cvejic, N., Loza, A., Bull, D., Cangarajah, N.: A similarity metric for assessment of image fusion algorithms. International Journal of Signal Processing 2 (2005)Google Scholar
  17. 17.
    Hossny, M., Nahavandi, S., Creighton, D.: A quadtree driven image fusion quality assessment. In: Proceedings of 5th IEEE International Conference on Industrial Informatics, vol. 1, pp. 419–424 (2007)Google Scholar
  18. 18.
    Yang, C., Zhang, J., Wang, X., Liu, X.: A novel similarity based quality metric for image fusion. Journal of Integrated Computer-Aided Engineering 12, 135–146 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mohammed Hossny
    • 1
  • Saeid Nahavandi
    • 1
  • Doug Crieghton
    • 1
  1. 1.Intelligent Systems Research LabDeakin UniversityAustralia

Personalised recommendations