In this paper we present a measurement-based worst-case execution time (WCET) analysis method. Exhaustive end-to-end execution-time measurements are computationally intractable in most cases. Therefore, we propose to measure execution times of subparts of the application code and then compose these times into a safe WCET bound.

This raises a number of challenges to be solved. First, there is the question of how to define and subsequently calculate adequate subparts. Second, a huge amount of test data is required enforcing the execution of selected paths to perform the desired runtime measurements.

The presented method provides solutions to both problems. In a number of experiments we show the usefulness of the theoretical concepts and the practical feasibility by using current state-of-the-art industrial case studies from project partners.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kirner, R., Puschner, P.: Classification of WCET analysis techniques. In: Proc. 8th IEEE International Symposium on Object-oriented Real-time distributed Computing, Seattle, WA, May 2005, pp. 190–199 (2005)Google Scholar
  2. 2.
    Petters, S.M.: Bounding the execution of real-time tasks on modern processors. In: Proc. 7th IEEE International Conference on Real-Time Computing Systems and Applications, Cheju Island, South Korea, pp. 12–14 (2000)Google Scholar
  3. 3.
    Bernat, G., Colin, A., Petters, S.M.: WCET analysis of probabilistic hard real-time systems. In: Proc. 23rd Real-Time Systems Symposium, Austin, Texas, USA, pp. 279–288 (2002)Google Scholar
  4. 4.
    Ernst, R., Ye, W.: Embedded program timing analysis based on path clustering and architecture classification. In: Proc. International Conference on Computer-Aided Design (ICCAD 1997), San Jose, USA (1997)Google Scholar
  5. 5.
    Puschner, P., Nossal, R.: Testing the results of static worst-case execution-time analysis. In: Proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS 1998), pp. 134–143. IEEEP (1998)Google Scholar
  6. 6.
    Wenzel, I.: Measurement-Based Timing Analysis of Superscalar Processors. PhD thesis, Technische Universität Wien, Institut für Technische Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria (2006)Google Scholar
  7. 7.
    Wenzel, I., Kirner, R., Rieder, B., Puschner, P.: Measurement-based worst-case execution time analysis. In: Third IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS), pp. 7–10 (2005)Google Scholar
  8. 8.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Moura, L.D., Owre, S., Ruess, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.: SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Tip, F.: A survey of program slicing techniques. Journal of Programming Languages 3, 121–189 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ingomar Wenzel
    • 1
  • Raimund Kirner
    • 1
  • Bernhard Rieder
    • 1
  • Peter Puschner
    • 1
  1. 1.Institut für Technische InformatikTechnische Universität WienViennaAustria

Personalised recommendations