Advertisement

Fuzzy Clustering and Active Contours for Histopathology Image Segmentation and Nuclei Detection

  • Adel Hafiane
  • Filiz Bunyak
  • Kannappan Palaniappan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5259)

Abstract

Histopathology imaging provides high resolution multispectral images for study and diagnosis of various types of cancers. The automatic analysis of these images can greatly facilitate the diagnosis task for pathologists. A primary step in computational histology is accurate image segmentation to detect the number and spatial distribution of cell nuclei in the tissue, along with segmenting other guiding structures such as lumen and epithelial regions which together make up a gland structure. This paper presents a new method for gland structure segmentation and nuclei detection. In the first step, fuzzy c-means with spatial constraint algorithm is applied to detect the potential regions of interest, multiphase vector-based level set algorithm is then used to refine the segmentation. Finally, individual nucleus centers are detected from segmented nuclei clusters using iterative voting algorithm. The obtained results show high performances for nuclei detection compared to the human annotation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doyle, S., Hwang, M., Shah, K., Madabhushi, A., Feldman, M., Tomaszeweski, J.: Automated grading of prostate cancer using architectural and textural image features. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro ISBI 2007, pp. 1284–1287 (April 2007)Google Scholar
  2. 2.
    Naik, S., Doyle, S., Feldman, M., Tomaszewski, J., Madabhushi, A.: Gland segmentation and computerized gleason grading of prostate histology by integrating low-, high-level and domain specific information. In: Proceedings of MIAAB, Piscataway, NJ, USA (2007)Google Scholar
  3. 3.
    Hafiane, A., Zavidovique, B., Chaudhuri, S.: A modified fcm with optimal peano scans for image segmentation. In: IEEE ICIP, Genova, Italy (2005)Google Scholar
  4. 4.
    Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Intern. J. Comput. Vis. 50(3), 271–293 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Communication on Pure and Applied Mathematics 42, 577–685 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dufour, A., Shinin, V., Tajbakhsh, S., Guillén-Aghion, N., Olivo-Marin, J.-C., Zimmer, C.: Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Trans. Image Process. 14(9), 1396–1410 (2005)CrossRefGoogle Scholar
  8. 8.
    Yan, P., Zhou, X., Shah, M., Wong, S.: Automatic segmentation of high-throughput rnai fluorescent cellular images. IEEE Trans. on Information Technology in Biomedecine 12(1) (January 2008)Google Scholar
  9. 9.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)CrossRefzbMATHGoogle Scholar
  10. 10.
    Bunyak, F., Palaniappan, K., Nath, S.K., Seetharaman, G.: Flux tensor constrained geodesic active contours with sensor fusion for persistent object tracking. Journal of Multimedia 2(4), 20–33 (2007)CrossRefGoogle Scholar
  11. 11.
    Chan, T., Sandberg, B., Vese, L.: Active contours without edges for vector-valued images. J. of Visual Communication and Image Representation 11, 130–141 (2000)CrossRefGoogle Scholar
  12. 12.
    Gevers, T., Weijer, J., Stokman, H.: Color feature detection. In: Lukac, R., Plataniotis, K.N. (eds.) Color Image Processing: Methods and Applications. CRC Press, Boca Raton (2006)Google Scholar
  13. 13.
    Parvin, B., Yang, Q., Han, J., Chang, H., Rydberg, B., Barcellos-Hoff, M.H.: Iterative voting for inference of structural saliency and characterization of subcellular events. IEEE Transactions on Image Processing 16(3), 615–623 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Schmitt, O., Hasse, M.: Radial symmetries based decomposition of cell clusters in binary and gray level images. Pattern Recognition 41, 1905–1923 (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Adel Hafiane
    • 1
  • Filiz Bunyak
    • 1
  • Kannappan Palaniappan
    • 1
  1. 1.Department of Computer ScienceUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations