Advertisement

Intuitionistic Fuzzy Clustering with Applications in Computer Vision

  • Dimitris K. Iakovidis
  • Nikos Pelekis
  • Evangelos Kotsifakos
  • Ioannis Kopanakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5259)

Abstract

Intuitionistic fuzzy sets are generalized fuzzy sets whose elements are characterized by a membership, as well as a non-membership value. The membership value indicates the degree of belongingness, whereas the non-membership value indicates the degree of non-belongingness of an element to that set. The utility of intuitionistic fuzzy sets theory in computer vision is increasingly becoming apparent, especially as a means to coping with noise. In this paper, we investigate the issue of clustering intuitionistic fuzzy image representations. To achieve that we propose a clustering approach based on the fuzzy c-means algorithm utilizing a novel similarity metric defined over intuitionistic fuzzy sets. The performance of the proposed algorithm is evaluated for object clustering in the presence of noise and image segmentation. The results indicate that clustering intuitionistic fuzzy image representations can be more effective, noise tolerant and efficient as compared with the conventional fuzzy c-means clustering of both crisp and fuzzy image representations.

Keywords

Image Segmentation Object Cluster Intuitionistic Fuzzy Information Fuzzy Image Hellenic World 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering a Review. ACM Computing Surveys 31(3), 264–323 (1999)CrossRefGoogle Scholar
  2. 2.
    Frigui, H., Krishnapuram, R.: A Robust Competitive Algorithm with Applications in Computer Vision. IEEE Trans. Pattern Analysis Machine Intelligence 21(5), 450–485 (1999)CrossRefGoogle Scholar
  3. 3.
    Chen, Y., Wang, J.Z., Krovetz, R.: CLUE: Cluster-Based Retrieval of Images by Unsupervised Learning. IEEE Trans. on Image Processing. 14(8), 1187–1201 (2005)CrossRefGoogle Scholar
  4. 4.
    Zadeh, L.A.: Fuzzy sets. Information Control 8, 338–356 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The Fuzzy C-Means Clustering Algorithm. Computers and Geosciences 10, 191–203 (1984)CrossRefGoogle Scholar
  6. 6.
    Cai, W., Chen, S., Zhang, D.: Fast and Robust Fuzzy C-Means Clustering Algorithms Incorporating Local Information for Image Segmentation. Pattern Recognition 40(3), 825–838 (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Yong, Y., Chongxun, Z., Pan, L.: A Novel Fuzzy C-Means Clustering Algorithm for Image Thresholding. Measurement Science Review 4(1), 11–19 (2004)Google Scholar
  8. 8.
    Karayannis, N.B.: Generalized Fuzzy C-Means Algorithms. Journal of Intelligent and Fuzzy Systems 8, 63–81 (2000)Google Scholar
  9. 9.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Atanassov, K.T.: More on Intuitionistic Fuzzy Sets. Fuzzy Sets Systems 33, 37–45 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Atanassov, K.T.: New Operations Defined Over the Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 61, 137–142 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Atanassov, K.T.: Operators Over Interval Valued Intuitionistic Fuzzy Sets. Fuzzy Sets Systems 64, 159–174 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Atanassov, K.T.: Intuitionistic Fuzzy Sets: Theory and Applications. Studies in Fuzziness and Soft Computing 35 (1999)Google Scholar
  14. 14.
    Vlachos, I.K., Sergiadis, G.D.: Towards Intuitionistic Fuzzy Image Processing. In: Proc. Int. Conf. on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, vol. 1, pp. 2–7 (2005)Google Scholar
  15. 15.
    Vlachos, I.K., Sergiadis, D.G.: Hesitancy Histogram Equalization. In: Proc. IEEE Conf. on Fuzzy Systems, pp. 1–6 (2007)Google Scholar
  16. 16.
    Vlachos, I.K., Sergiadis, D.G.: Intuitionistic Fuzzy Information - Applications to Pattern Recognition. Pattern Recognition Letters 28, 197–206 (2006)CrossRefGoogle Scholar
  17. 17.
    Bloch, I.: Dilation and Erosion of Spatial Bipolar Fuzzy Sets. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 385–393. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Jawahar, C.V., Ray, A.K.: Fuzzy Statistics of Digital Images. Pattern Recognition Letters 17, 541–546 (1996)CrossRefGoogle Scholar
  19. 19.
    Dengfeng, L., Chuntian, C.: New Similarity Measure of Intuitionistic Fuzzy Sets and Application to Pattern Recognitions. Pattern Recognition Letters 23, 221–225 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  21. 21.
    Swain, M., Ballard, D.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)CrossRefGoogle Scholar
  22. 22.
    Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-20). TR CUCS-005-96, Dept. Comp. Sc., Columbia University (1996)Google Scholar
  23. 23.
    FHW, Foundation of the Hellenic World, http://www.fhw.gr/index_en.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dimitris K. Iakovidis
    • 1
  • Nikos Pelekis
    • 2
  • Evangelos Kotsifakos
    • 2
  • Ioannis Kopanakis
    • 3
  1. 1.Dept. of Methodology, History & Theory of ScienceUniversity of AthensAthensGreece
  2. 2.Dept. of InformaticsUniversity of PiraeusPiraeusGreece
  3. 3.Technological Educational Institute of CreteHeraklion CreteGreece

Personalised recommendations