Advertisement

A Multicomponent Image Segmentation Framework

  • J. Driesen
  • P. Scheunders
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5259)

Abstract

In this paper, we propose a framework for the segmentation of multicomponent images. The specific framework we aim at contains different steps in which all components of the multicomponent image are processed simultaneously, accounting for the correlation between the image components. The framework contains the following steps: a) to initiate, a pixel-based, spectral clustering procedure is applied. b) to include spatial information, a model-based region-merging technique is used, applying a multinormal model for the coefficient regions, and estimating the model parameters using Maximum Likelihood principles; c)the model allows to treat noise that might be present efficiently; d) a multiscale version of the framework is established by repeating the same procedure at different resolution levels of the original image. e) Then, a link between the different levels is established by constructing a hierarchy between the regions at different levels. In this work, we will demonstrate the performance of the framework for segmentation purposes. The procedure is performed on color images and multispectral remote sensing images.

Keywords

Segmentation Result Resolution Level Multispectral Image Wavelet Domain Segmentation Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thomas, I., Benning, V., Ching, N.: Classification of remotely sensed images. Adam Hilger, Bristol (1987)Google Scholar
  2. 2.
    Lee, C., Landgrebe, D.A.: Analyzing high-dimensional multispectral data. IEEE TGARS 31(4), 388–400 (1993)Google Scholar
  3. 3.
    Taxt, T., Lundervold, A.: Multispectral analysis of the brain using magnetic resonance imaging. IEEE Trans. Med. Imaging 13(3), 470–481 (1994)CrossRefGoogle Scholar
  4. 4.
    Busch, G.: Wavelet based texture segmentation of multi-modal tomographic images. Computer & Graphics 21(3), 347–358 (1997)CrossRefGoogle Scholar
  5. 5.
    Pal, S., Mitra, P.: Multispectral image segmentation using the rough-set-initialized em algorithm. IEEE Transactions on Geoscience and Remote Sensing 40(11), 2495–2501 (2002)CrossRefGoogle Scholar
  6. 6.
    Murtagh, F., Raftery, A., Starck, J.: Bayesian inference for multiband image segmentation via model-based cluster trees. Image and Vision Computing 23(6), 587–596 (2005)CrossRefGoogle Scholar
  7. 7.
    Farag, A., Mohamed, M., El-Baz, A.: A unified framework for map estimation in remote sensing image segmentation. IEEE Transactions on Geoscience and Remote Sensing 43(7), 1617–1634 (2005)CrossRefGoogle Scholar
  8. 8.
    Evans, C., Jones, R., Svalbe, I., Berman, M.: Segmenting multispectral landsat tm images into field units. IEEE Transactions on Geoscience and Remote Sensing 40(5), 1054–1064 (2002)CrossRefGoogle Scholar
  9. 9.
    Chan, T., Sandberg, B., Vese, L.: Active contours without edges for vector-valued images. Journal of Visual Communication Image Representation 11(2), 130–141 (2000)CrossRefGoogle Scholar
  10. 10.
    Rydberg, A., Borgefors, G.: Integrated method for boundary delineation of agricultural fields in multispectral satellite images. IEEE Transactions on Geoscience and Remote Sensing 39(11), 2514–2520 (2001)CrossRefGoogle Scholar
  11. 11.
    Wang, L., Sousa, W., Gong, P.: Integration of object-based and pixel-based classification for mapping mangroves with ikonos imagery. IEEE Transactions on Geoscience and Remote Sensing 25(24), 5655–5668 (2004)Google Scholar
  12. 12.
    Zenzo, S.D.: A note on the gradient of a multi-image. Computer Vision, Graphics and Image Processing 33(1), 116–125 (1986)CrossRefzbMATHGoogle Scholar
  13. 13.
    Cumani, A.: Edge detection in multispectral images. CVGIP: Graphical Models and Image Processing archive 53(1), 40–51 (1991)zbMATHGoogle Scholar
  14. 14.
    Sapiro, G., Ringach, D.: Anisotropic diffusion of multivalued images with application to color filtering. IEEE Transactions on Image Processing 5(11), 1582–1586 (1996)CrossRefzbMATHGoogle Scholar
  15. 15.
    Schistad Solberg, A., Jain, A., Taxt, T.: Multisource classification of remotely sensed data: fusion of landsat tm and sar images. IEEE Transactions on Geoscience and Remote Sensing 32, 768–778 (1994)CrossRefGoogle Scholar
  16. 16.
    Lombardo, P., Oliver, C., Macri Pellizzeri, T., Meloni, M.: A new maximum-likelihood joint segmentation technique for multitemporal sar and multiband optical images. IEEE Transactions on Geoscience and Remote Sensing 41(11), 2500–2518 (2003)CrossRefGoogle Scholar
  17. 17.
    Collet, C., Murtagh, F.: Multiband segmentation based on a hierarchical markov model. Pattern Recognition 37(12), 2337–2347 (2004)CrossRefGoogle Scholar
  18. 18.
    Vanhamel, I., Pratikakis, I., Sahli, H.: Multiscale gradient watersheds of color images. IEEE Transactions on Image Processing 12(6), 617–626 (2003)CrossRefzbMATHGoogle Scholar
  19. 19.
    Gauch, J.: Image segmentation and analysis via multiscale gradient watershed hierarchies. IEEE Transactions on Image Processing 8(1), 69–79 (1999)CrossRefGoogle Scholar
  20. 20.
    Scheunders, P., Driesen, J.: Least-squares interband denoising of color and multispectral images. In: IEEE International Conference on Image Processing, pp. 985–988 (2004)Google Scholar
  21. 21.
    Haris, K., Efstratiadis, S., Maglaveras, N., Katsaggelos, A.: Hybrid image segmentation using watersheds and fast region merging. IEEE Transactions on Image Processing 7(12), 1684–1699 (1998)CrossRefGoogle Scholar
  22. 22.
    Cook, R., McConnell, I., Oliver, C.J., Welbourne, E.: MUM (merge using moments) segmentation for sar images. In: Proceedings of SPIE on SAR Data Processing for Remote Sensing, Rome, Italy, vol. 2316, pp. 92–103 (December 1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • J. Driesen
    • 1
  • P. Scheunders
    • 1
  1. 1.IBBT-VisielabUniversity of AntwerpWilrijkBelgium

Personalised recommendations