Spatially-Variant Directional Mathematical Morphology Operators Based on a Diffused Average Squared Gradient Field

  • Rafael Verdú-Monedero
  • Jesús Angulo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5259)


This paper proposes an approach for mathematical morphology operators whose structuring element can locally adapt its orientation across the pixels of the image. The orientation at each pixel is extracted by means of a diffusion process of the average squared gradient field. The resulting vector field, the average squared gradient vector flow, extends the orientation information from the edges of the objects to the homogeneous areas of the image. The provided orientation field is then used to perform a spatially variant filtering with a linear structuring element. Results of erosion, dilation, opening and closing spatially-variant on binary images prove the validity of this theoretical sound and novel approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Serra, J.: Image Analysis and Mathematical Morphology: Theoretical Advances, vol. II. Academic Press, London (1988)Google Scholar
  2. 2.
    Soille, P., Talbot, H.: Directional morphological filtering. PAMI 23, 1313–1329 (2001)CrossRefGoogle Scholar
  3. 3.
    Heijmans, H., Buckley, M., Talbot, H.: Path openings and closings. Journal of Mathematical Imaging and Vision 22, 107–119 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bouaynaya, N., Schonfeld, D.: Theoretical foundations of spatially-variant mathematical morphology part ii: Gray-level images. PAMI 30, 837–850 (2008)CrossRefGoogle Scholar
  5. 5.
    Roerdink, J.: Group morphology. Pattern Recognition 33, 877–895 (2000)CrossRefGoogle Scholar
  6. 6.
    Cuisenaire, O.: Locally adaptable mathematical morphology using distance transformations. Pattern Recognition 39, 405–416 (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    Lerallut, R., Decenciere, E., Meyer, F.: Image filtering using morphological amoebas. Image Vision Comput. 25, 395–404 (2007)CrossRefGoogle Scholar
  8. 8.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. I (1982)Google Scholar
  9. 9.
    Soille, P.: Morphological Image Analysis. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Xu, C., Prince, J.L.: Generalized gradient vector flow external forces for active contours. Signal Processing 71, 131–139 (1998)CrossRefzbMATHGoogle Scholar
  11. 11.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Processing 7, 359–369 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kass, M., Witkin, A.: Analyzing oriented patterns. Comput. Vision Graph. Image Process 37, 362–385 (1987)CrossRefGoogle Scholar
  13. 13.
    Bazen, A.M., Gerez, S.H.: Systematic methods for the computation of the directional fields and singular points of fingerprints. PAMI 24, 905–919 (2002)CrossRefGoogle Scholar
  14. 14.
    Perona, P.: Orientation diffusions. IEEE Trans. Image Processing 7, 457–467 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rafael Verdú-Monedero
    • 1
  • Jesús Angulo
    • 2
  1. 1.Department of Information Technologies and CommunicationsTechnical University of CartagenaCartagenaSpain
  2. 2.Centre de Morphologie Mathématique, Ecole des Mines de ParisFontainebleau CedexFrance

Personalised recommendations