Advertisement

Parallel Algorithm for Concurrent Computation of Connected Component Tree

  • P. Matas
  • E. Dokládalová
  • M. Akil
  • T. Grandpierre
  • L. Najman
  • M. Poupa
  • V. Georgiev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5259)

Abstract

The paper proposes a new parallel connected-component-tree construction algorithm based on line independent building and progressive merging of partial 1-D trees. Two parallelization strategies were developed: the parallelism maximization strategy, which balances the workload of the processes, and the communication minimization strategy, which minimizes communication among the processes. The new algorithm is able to process any pixel data type, thanks to not using a hierarchical queue. The algorithm needs only the input and output buffers and a small stack. A speedup of 3.57 compared to the sequential algorithm was obtained on Opteron 4-core shared memory ccNUMA architecture. Performance comparison with existing state of the art is also discussed.

Keywords

Parallel Algorithm Parent Pointer Graph Transformation Sequential Algorithm Output Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. on Image Proc. 7(4), 555–570 (1998)CrossRefGoogle Scholar
  2. 2.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Transactions on Image Processing 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  3. 3.
    Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Effective component tree computation with application to pattern recognition in astronomical imaging. In: ICIP 2007 (2007)Google Scholar
  4. 4.
    Menotti, D., Najman, L., de Albuquerque Araújo, A.: 1D Component Tree in Linear Time and Space and its Application to Gray-Level Image Multithresholding. In: Proceedings of the 8th International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil, October 10–13, MCT/INPE, vol. 1, pp. 437–448 (2007)Google Scholar
  5. 5.
    Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker, J.-E., Meijster, A.: Concurrent Computation of Attribute Filters on Shared Memory Parallel Machines. Transactions on Pattern Analysis and Machine Intelligence (submitted, 2007)Google Scholar
  6. 6.
    Couprie, M., Najman, L., Bertrand, G.: Quasi-linear algorithms for the topological watershed. Journal of Mathematical Imaging and Vision 22(2-3), 231–249 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22, 215–225 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ngan, N., Contou-Carrère, F., Marcon, B., Guérin, S., Dokládalová, E., Akil, M.: Efficient hardware implementation of connected component tree algorithm. In: Workshop on Design and Architectures for Signal and Image Processing, DASIP 2007, Grenoble, France (2007)Google Scholar
  9. 9.
    Berger, C., Widynsky, N.: Using connected operators to manipulate image components. Report, LRDE Seminar (July 2005)Google Scholar
  10. 10.
    Meijster, A.: Efficient Sequential and Parallel Algorithms for Morphological Image Processing. PhD thesis, Rijksuniversiteit GroningenGoogle Scholar
  11. 11.
    Berger, C., Geraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Image Processing. In: IEEE International Conference on ICIP 2007, September 16 -October 19, vol. 4, IV - 41– IV - 44 (2007)Google Scholar
  12. 12.
    Deloison, B.: Recherche et développement en traitement d’image: Utilisation de l’arbre des composantes pour la fusion d’images. Report from graduate project, ESIEE Paris (June 2007)Google Scholar
  13. 13.
    Chiang, Y.-J., Lenz, T., Lu, X., Rote, G.: Simple and optimal output sensitive construction of contour trees using monotone paths. Comp. Geometry: Theory and Applications 30(2), 165–195 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mattes, J., Demongeot, J.: Efficient algorithms to implement the confinement tree. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 392–405. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • P. Matas
    • 1
    • 2
  • E. Dokládalová
    • 1
  • M. Akil
    • 1
  • T. Grandpierre
    • 1
  • L. Najman
    • 1
  • M. Poupa
    • 2
  • V. Georgiev
    • 2
  1. 1.IGMUnité Mixte CNRS-UMLV-ESIEE UMR8049, Université Paris-EstNoisy le GrandFrance
  2. 2.Department of Applied Electronics and TelecommunicationsUniversity of West BohemiaPlzeňCzech Republic

Personalised recommendations