Optimised Search Heuristic Combining Valid Inequalities and Tabu Search

  • Susana Fernandes
  • Helena R. Lourenço
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5296)

Abstract

This paper presents an Optimised Search Heuristic that combines a tabu search method with the verification of violated valid inequalities. The solution delivered by the tabu search is partially destroyed by a randomised greedy procedure, and then the valid inequalities are used to guide the reconstruction of a complete solution. An application of the new method to the Job-Shop Scheduling problem is presented.

Keywords

Optimised Search Heuristic Tabu Search GRASP Valid Inequalities Job-shop Scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fernandes, S., Lourenço, H.R.: Optimized search heuristics. Technical report, Universitat Pompeu Fabra (2007)Google Scholar
  2. 2.
    Nowicki, E., Smutnicki, C.: An advanced tabu search algorithm for the job shop problem. Journal of Scheduling 8, 145–159 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chen, S., Talukdar, S., Sadeh, N.: Job-shop-scheduling by a team of asynchronous agent. In: IJCAI 1993 Workshop on Knowledge-Based Production, Scheduling and Control, Chambéry, France (1993)Google Scholar
  4. 4.
    Denzinger, J., Offermann, T.: On cooperation between evolutionary algorithms and other search paradigms. In: 1999 Congress on Evolutionary Computation (CEC). IEEE Press, Los Alamitos (1999)Google Scholar
  5. 5.
    Tamura, H., Hirahara, A., Hatono, I., Umano, M.: An approximate solution method for combinatorial optimisation. Transactions of the Society of Instrument and Control Engineers 130, 329–336 (1994)CrossRefGoogle Scholar
  6. 6.
    Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop scheduling. Management Science 34(3), 391–401 (1988)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Applegate, D., Cook, W.: A computational study of the job-shop scheduling problem. ORSA Journal on Computing 3(2), 149–156 (1991)CrossRefMATHGoogle Scholar
  8. 8.
    Caseau, Y., Laburthe, F.: Disjunctive scheduling with task intervals. Technical Report LIENS 95-25, Ecole Normale Superieure Paris (July 1995)Google Scholar
  9. 9.
    Balas, E., Vazacopoulos, A.: Guided local search with shifting bottleneck for job shop scheduling. Management Science 44(2), 262–275 (1998)CrossRefMATHGoogle Scholar
  10. 10.
    Pezzella, F., Merelli, E.: A tabu search method guided by shifting bottleneck for the job shop scheduling problem. European Journal of Operational Research 120, 297–310 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lourenço, H.R.: Job-shop scheduling: Computational study of local search and large-step optimization methods. European Journal of Operational Research 83, 347–367 (1995)CrossRefMATHGoogle Scholar
  12. 12.
    Lourenço, H.R., Zwijnenburg, M.: Combining large-step optimization with tabu-search: Application to the job-shop scheduling problem. In: Osman, I.H., Kelly, J.P. (eds.) Meta-heuristics: Theory & Applications. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  13. 13.
    Schaal, A., Fadil, A., Silti, H.M., Tolla, P.: Meta heuristics diversification of generalized job shop scheduling based upon mathematical programming techniques. In: CP-AI-OR 1999 (1999)Google Scholar
  14. 14.
    Danna, E., Rothberg, E., Pape, C.L.: Exploring relaxation induced neighborhoods to improve MIP solutions. Mathematical Programming, Ser. A 102, 71–90 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Jain, A.S., Meeran, S.: Deterministic job shop scheduling: Past, present and future. European Journal of Operational Research 133, 390–434 (1999)CrossRefMATHGoogle Scholar
  16. 16.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)MATHGoogle Scholar
  17. 17.
    Roy, B., Sussman, B.: Les problems d’ordonnancement avec constraintes disjonctives. Technical report, Notes DS 9 bis, SEMA, Paris (1964)Google Scholar
  18. 18.
    Fernandes, S., Lourenço, H.R.: A GRASP and branch-and-bound metaheuristic for the job-shop scheduling. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 60–71. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Glover, F.: Tabu search - part i. ORSA Journal on Computing 1(3), 190–206 (1989)CrossRefMATHGoogle Scholar
  21. 21.
    Glover, F.: Tabu search - part ii. ORSA Journal on Computing 2(1), 4–32 (1990)CrossRefMATHGoogle Scholar
  22. 22.
    Carlier, J., Pinson, E.: An algorithm for solving the job-shop problem. Management Science 35(2), 164–176 (1989)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Schrage, L.: Solving resource-constrained network problems by implicit enumeration: Non pre-emptive case. Operations Research 18, 263–278 (1970)CrossRefMATHGoogle Scholar
  24. 24.
    Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop scheduling rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp. 225–251. Prentice-Hall, Englewood Cliffs (1963)Google Scholar
  25. 25.
    Lawrence, S.: Resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques. Technical report, Graduate School of Industrial Administration, Carnegie-Mellon University (1984)Google Scholar
  26. 26.
    Storer, R.H., Wu, S.D., Vaccari, R.: New search spaces for sequencing problems with application to job shop scheduling. Management Science 38(10), 1495–1509 (1992)CrossRefMATHGoogle Scholar
  27. 27.
    Taillard, E.D.: Benchmarks for basic scheduling problems. European Journal of Operational Research 64(2), 278–285 (1993)CrossRefMATHGoogle Scholar
  28. 28.
    Yamada, T., Nakano, R.: A genetic algorithm applicable to large-scale job-shop problems. In: Manner, R., Manderick, B. (eds.) Parallel Problem Solving from Nature 2, pp. 281–290. Elsevier Science, Brussels Belgium (1992)Google Scholar
  29. 29.
    Nowicki, E., Smutnicki, C.: Some new tools to solve the job shop problem. Technical Report 60/2002, Institute of Engineering Cybernetics, Wroclaw University of Technology (2002)Google Scholar
  30. 30.
    Nowicki, E., Smutniki, C.: A fast taboo search algorithm for the job shop problem. Management Science 42(6), 797–813 (1996)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Susana Fernandes
    • 1
  • Helena R. Lourenço
    • 2
  1. 1.Universidade do AlgarveFaroPortugal
  2. 2.Univertitat Pompeu FabraBarcelonaSpain

Personalised recommendations