Memetic Algorithm for Intense Local Search Methods Using Local Search Chains

  • Daniel Molina
  • Manuel Lozano
  • C. García-Martínez
  • Francisco Herrera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5296)


This contribution presents a new memetic algorithm for continuous optimization problems, which is specially designed for applying intense local search methods. These local search methods make use of explicit strategy parameters to guide the search, and adapt these parameters with the purpose of producing more effective solutions. They may achieve accurate results, at the cost of requiring high intensity, making more difficult their application into a memetic algorithm. Our memetic algorithm approach assigns to each individual a local search intensity that depends on its features, by chaining different local search applications. With this technique of search chains, at each stage the local search operator may continue the operation of a previous invocation, starting from the final configuration reached by this one. The proposed memetic algorithm integrates the CMA-ES algorithm as their local search operator. We compare our proposal with other memetic algorithms and evolutionary algorithms for continuous optimization, showing that it presents a clear superiority over the compared algorithms.


Local Search Strategy Parameter Memetic Algorithm Local Search Algorithm Covariance Matrix Adaptation Evolution Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)Google Scholar
  2. 2.
    Goldberg, D.E., Voessner, S.: Optimizing global-local search hybrids. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference 1999, pp. 220–228. Morgan Kaufmann, San Mateo (1999)Google Scholar
  3. 3.
    Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Technical report, Technical Report Caltech Concurrent Computation Program Report 826, Caltech, Pasadena, California (1989)Google Scholar
  4. 4.
    Moscato, P.: Memetic algorithms: a short introduction, pp. 219–234. McGraw-Hill, London (1999)Google Scholar
  5. 5.
    Merz, P.: Memetic Algorithms for Combinatorial Optimization Problems: Fitness Landscapes and Effective Search Strategies. PhD thesis, University of Siegen, GermanyGoogle Scholar
  6. 6.
    Hart, W.: Adaptive Global Optimization With Local Search. PhD thesis, Univ. California, San Diego, CA (1994)Google Scholar
  7. 7.
    Hansen, N., Ostermeier, A.: Adapting Arbitrary Normal Mutation Distributions in Evolution Strategies: The Covariance Matrix Adaptation. In: Proceeding of the IEEE International Conference on Evolutionary Computation (ICEC 1996), pp. 312–317 (1996)Google Scholar
  8. 8.
    Hansen, N., Müller, S., Koumoutsakos, P.: Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation 1(11), 1–18 (2003)CrossRefGoogle Scholar
  9. 9.
    Hansen, N., Kern, S.: Evaluating the CMA Evolution Strategy on Multimodal Test Functions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Auger, A., Hansen, N.: Performance Evaluation of an Advanced Local Search Evolutionary Algorithm. In: 2005 IEEE Congress on Evolutionary Computation, pp. 1777–1784 (2005)Google Scholar
  11. 11.
    Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real parameter optimization. Technical report, Nanyang Technical University (2005)Google Scholar
  12. 12.
    Hansen, N.: Compilation of Results on the CEC Benchmark Function Set. In: 2005 IEEE Congress on Evolutionary Computation (2005)Google Scholar
  13. 13.
    Auger, A., Schoenauer, M., Vanhaecke, N.: LS-CMAES: a second-order algorithm for covariance matrix adaptation. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 182–191. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Whitley, D.: The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best. In: Proc. of the Third Int. Conf. on Genetic Algorithms, pp. 116–121 (1989)Google Scholar
  15. 15.
    Land, M.S.: Evolutionary Algorithms with Local Search for Combinational Optimization. PhD thesis, Univ. California, San Diego, CA (1998)Google Scholar
  16. 16.
    Herrera, F., Lozano, M., Verdegay, J.L.: Tackling Real-coded Genetic Algorithms: Operators and Tools for the Behavioral Analysis. Artificial Intelligence Reviews 12(4), 265–319 (1998)CrossRefzbMATHGoogle Scholar
  17. 17.
    Fernandes, C., Rosa, A.: A Study of non-Random Matching and Varying Population Size in Genetic Algorithm using a Royal Road Function. In: Proc. of the 2001 Congress on Evolutionary Computation, pp. 60–66 (2001)Google Scholar
  18. 18.
    Mülenbein, H., Schlierkamp-Voosen, D.: Predictive Models for the Breeding Genetic Algorithm in Continuous Parameter Optimization. Evolutionary Computation 1, 25–49 (1993)CrossRefGoogle Scholar
  19. 19.
    Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded Memetic Algorithms with Crossover Hill-climbing. Evolutionary Computation 12(2), 273–302 (2004)CrossRefGoogle Scholar
  20. 20.
    Tang, J., Lim, M., Ong, Y.: Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Computing 11(9), 873–888 (2007)CrossRefGoogle Scholar
  21. 21.
    García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the cec 2005 special session on real parameter optimization. Journal of Heuristics (in press, 2008)Google Scholar
  22. 22.
    Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local search. In: IEEE Transactions on evolutionary Computation (in press, 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Daniel Molina
    • 1
  • Manuel Lozano
    • 2
  • C. García-Martínez
    • 3
  • Francisco Herrera
    • 2
  1. 1.Department of Computer Languages and SystemsUniversity of CádizCádiz
  2. 2.Department of Computer Science and Artificial InteligenceUniversity of GranadaGranada
  3. 3.Department of Computing and Numerical AnalysisUniversity of CórdobaCórdoba

Personalised recommendations