TopEVM: Using Co-occurrence and Topology Patterns of Enzymes in Metabolic Networks to Construct Phylogenetic Trees

  • Tingting Zhou
  • Keith C. C. Chan
  • Zhenghua Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5265)

Abstract

Network-based phylogenetic analysis typically involves representing metabolic networks as graphs and analyzing the characteristics of vertex sets using set theoretic measures. Such approaches, however, fail to take into account the structural characteristics of graphs. In this paper we propose a new pattern recognition technique, TopEVM, to help representing metabolic networks as weighted vectors. We assign weights according to co-occurrence patterns and topology patterns of enzymes, where the former are determined in a manner similar to the Tf-Idf approach used in document clustering, and the latter are determined using the degree centrality of enzymes. By comparing the weighted vectors of organisms, we determine the evolutionary distances and construct the phylogenetic trees. The resulting TopEVM trees are compared to the previous NCE trees with the NCBI Taxonomy trees as reference. It shows that TopEVM can construct trees much closer to the NCBI Taxonomy trees than the previous NCE methods.

Keywords

TopEVM phylogenetic analysis metabolic network co-occurrence pattern document clustering topology pattern degree centrality evolutionary distance 

References

  1. 1.
    Husmeier, D.: Introduction to Statistical Phylogenetics. In: Husmeier, D., Richard Dybowski, R., Roberts, S. (eds.) Probabilistic Modeling in Bioinformatics and Medical Informatics. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Holmes, E.C., et al.: Using Phylogenetic Trees to Reconstruct the History of Infectious Disease Epidemics. In: Harvey, P. (ed.) New Uses for New Phylogenies. Oxford University Press, Oxford (1996)Google Scholar
  3. 3.
    Ludwig, W., Schleifer, K.: Bacterial Phylogeny Based on 16S and 23S rRNA Sequence Analysis. FEMS Microbiol Rev. 15(2-3), 155–173 (1994)CrossRefPubMedGoogle Scholar
  4. 4.
    Wolf, Y.I., et al.: Genome Trees and the Tree of Life. Trends in Genetics 18(9), 472–479 (2002)CrossRefPubMedGoogle Scholar
  5. 5.
    Pal, C., Papp, B., Lercher, M.J.: Adaptive Evolution of Bacterial Metabolic Networks by Horizontal Gene Transfer. Nature Genetics 37(12), 1372–1375 (2005)CrossRefPubMedGoogle Scholar
  6. 6.
    Ebenhöh, O., Handorf, T., Heinrich, R.: A Cross Species Comparison of Metabolic Network Functions. Genome Informatics 16(1), 203–213 (2005)PubMedGoogle Scholar
  7. 7.
    Tohsato, Y.: A Method for Species Comparison of Metabolic Networks Using Reaction Profile. IPSJ Digital Courier 2(0), 685–690 (2006)CrossRefGoogle Scholar
  8. 8.
    Forst, C.V., Flamm, C., Hofacker, I.L., Stadler, P.F.: Algebraic Comparison of Metabolic Networks, Phylogenetic Inference, and Metabolic Innovation. BMC Bioinformatics 7(1), 67–78 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhou, T., Chan, C., Pan, Y., Wang, Z.: An Approach for Determining Evolutionary Distance in Network-Based Phylogenetic Analysis. In: Măndoiu, I., Sunderraman, R., Zelikovsky, A. (eds.) ISBRA 2008. LNCS (LNBI), vol. 4983. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Ma, H.W., Zeng, A.P.: Phylogenetic Comparison of Metabolic Capacities of Organisms at Genome Level. Molecular Phylogenetics and Evolution 31(1), 204–213 (2004)CrossRefPubMedGoogle Scholar
  11. 11.
    Aguilar, D., et al.: Analysis of Phenetic Trees Based on Metabolic Capabilities Across the Three Domains of Life. Journal of Molecular Biology 340(3), 491–512 (2004)CrossRefPubMedGoogle Scholar
  12. 12.
    Zhu, D., Qin, Z.S.: Structural Comparison of Metabolic Networks in Selected Single Cell Organisms. BMC Bioinformatics 6(8) (2005)Google Scholar
  13. 13.
    Liu, W., Lin, W., Davis, A., Jordan, F., Yang, H., Hwang, M.: A Network Perspective on the Topological Importance of Enzymes and Their Phylogenetic Conservation. BMC Bioinformatics 8(121) (2007)Google Scholar
  14. 14.
    Aizawa, A.: An Information-theoretic Perspective of Tf-idf Measures. Information Processing and Management 39(1), 45–65 (2003)CrossRefGoogle Scholar
  15. 15.
    Light, S., Kraulis, P., Elofsson, A.: Preferential Attachment in the Evolution of Metabolic networks. BMC Genomics 6(1), 159 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Aittokallio, T., Schwikowski, B.: Graph-based Methods for Analyzing Networks in Cell Biology. Briefings in Bioinformatics 7(3), 243 (2006)CrossRefPubMedGoogle Scholar
  17. 17.
    Willett, P., Barnard, J.M., Downs, G.M.: Chemical Similarity Searching. J. Chem. Inf. Comput. Sci. 38(6), 983–996 (1998)CrossRefGoogle Scholar
  18. 18.
    Ma, H.W., Zeng, A.P.: Reconstruction of Metabolic Networks from Genome Data and Analysis of Their Global Structure for Various Organisms. Bioinformatics 19(2), 270–277 (2003)CrossRefPubMedGoogle Scholar
  19. 19.
  20. 20.
  21. 21.
  22. 22.
    Puigbo, P., Garcia-Vallve, S., McInerney, J.O.: TOPD/FMTS: A New Software to Compare Phylogenetic Trees. Bioinformatics 23(12), 1556 (2007)CrossRefPubMedGoogle Scholar
  23. 23.
    Bluis, J., Shin, D.G.: Nodal Distance Algorithm: Calculating a Phylogenetic Tree Comparison Metric. In: Proceedings of third IEEE Symposium on Bioinformatics and Bioengineering (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tingting Zhou
    • 1
    • 2
  • Keith C. C. Chan
    • 2
  • Zhenghua Wang
    • 1
  1. 1.National Laboratory for Paralleling and Distributed ProcessingNational University of Defense TechnologyChangshaP.R. China
  2. 2.Department of computingThe Hong Kong Polytechnic UniversityHong KongChina

Personalised recommendations