Domain-Domain Interaction Identification with a Feature Selection Approach

  • Xing-Ming Zhao
  • Luonan Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5265)

Abstract

The protein-protein interactions (PPIs) are generally assumed to be mediated by domain-domain interactions (DDIs). Many computational methods have been proposed based on this assumption to predict DDIs from available data of PPIs. However, most of the existing methods are generative methods that consider only PPI data without taking into account non-PPIs. In this paper, we propose a novel discriminative method for predicting DDIs from both PPIs and non-PPIs, which improves the prediction reliability. In particular, the DDI identification is formalized as a feature selection problem, which is equivalent to the parsimonious principle and is able to predict both DDIs and PPIs in a systematic and accurate manner. The numerical results on benchmark dataset demonstrate that formulating DDI prediction as a feature selection problem can predict DDIs from PPIs in a reliable way, which in turn is able to verify and further predict PPIs based on inferred DDIs.

Keywords

Discriminative approach domain-domain interaction feature selection protein-protein interaction 

References

  1. 1.
    Eisenberg, D., Marcotte, E., Xenarios, I., Yeates, T.: Protein function in the post-genomic era. Nature 405, 823–826 (2000)CrossRefPubMedGoogle Scholar
  2. 2.
    Itzhaki, Z., Akiva, E., Altuvia, Y., Margalit, H.: Evolutionary conservation of domain-domain interactions. Genome Biology 7(12), R125 (2006)CrossRefGoogle Scholar
  3. 3.
    Zhao, X., Wang, Y., Chen, L., Aihara, K.: Protein domain annotation with integration of heterogeneous information sources. Proteins: Structure, Function, and Bioinformatics (in press, 2008)Google Scholar
  4. 4.
    Sprinzak, E., Margalit, H.: Correlated sequence-signatures as markers of protein-protein interaction. J. Mol. Biol. 311(4), 681–692 (2001)CrossRefPubMedGoogle Scholar
  5. 5.
    Deng, M., Mehta, S., Sun, F., Chen, T.: Inferring domain-domain interactions from protein-protein interactions. Genome Res. 12(10), 1540–1548 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu, Y., Liu, N., Zhao, H.: Inferring protein-protein interactions through high-throughput interaction data from diverse organisms. Bioinformatics 21(15), 3279–3285 (2005)CrossRefPubMedGoogle Scholar
  7. 7.
    Riley, R., Lee, C., Sabatti, C., Eisenberg, D.: Inferring protein domain interactions from databases of interacting proteins. Genome Biol. 6(10) (2005)Google Scholar
  8. 8.
    Xenarios, I., Rice, D., Salwinski, L., Baron, M., Marcotte, E.M., et al.: DIP: the Database of Interacting Proteins. Nucl. Acids Res. 28(1), 289–291 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Guimaraes, K., Jothi, R., Zotenko, E., Przytycka, T.: Predicting domain-domain interactions using a parsimony approach. Genome Biology 7(11), R104 (2006)CrossRefGoogle Scholar
  10. 10.
    Lee, H., Deng, M., Sun, F., Chen, T.: An integrated approach to the prediction of domain-domain interactions. BMC Bioinformatics 7(1), 269 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhao, X., Li, X., Chen, L., Aihara, K.: Protein classification with imbalanced data. Proteins: Structure, Function, and Bioinformatics 70(4), 1125–1132 (2008)CrossRefGoogle Scholar
  12. 12.
    Zhao, X., Chen, L., Aihara, K.: Gene function prediction using labeled and unlabeled data. BMC Bioinformatics 9, 57 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Qi, Y., Bar-Joseph, Z., Klein-Seetharaman, J.: Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins: Structure, Function, and Bioinformatics 63(3), 490–500 (2006)CrossRefGoogle Scholar
  14. 14.
    Tong, A., Lesage, G., Bader, G., Ding, H., Xu, H., et al.: Global Mapping of the Yeast Genetic Interaction Network. Science 303(5659), 808–813 (2004)CrossRefPubMedGoogle Scholar
  15. 15.
    Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., et al.: Feature selection and transduction for prediction of molecular bioactivity for drug design. Bioinformatics 19(6), 764–771 (2003)CrossRefPubMedGoogle Scholar
  16. 16.
    Bateman, A., Coin, L., Durbin, R., Finn, R., Hollich, V., et al.: The Pfam protein families database. Nucl. Acids Res. 32(suppl.1), D138–141 (2004)CrossRefGoogle Scholar
  17. 17.
    Raghavachari, B., Tasneem, A., Przytycka, T., Jothi, R.: DOMINE: a database of protein domain interactions. Nucl. Acids Res. 36(suppl.1), D656–661 (2008)CrossRefGoogle Scholar
  18. 18.
    Stein, A., Russell, R., Aloy, P.: 3did: interacting protein domains of known three-dimensional structure. Nucl. Acids Res. 33(suppl.1), D413–417 (2005)Google Scholar
  19. 19.
    Finn, R., Marshall, M., Bateman, A.: iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions. Bioinformatics 21(3), 410–412 (2005)CrossRefPubMedGoogle Scholar
  20. 20.
    Raja, J., Praveen, F., Asba, T., Teresa, M.: Co-evolutionary analysis of domains in interacting proteins reveals insights into domain-domain interactions mediating protein-protein interactions. Journal of Molecular Biology 362, 861–875 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Xing-Ming Zhao
    • 1
  • Luonan Chen
    • 1
  1. 1.Institute of Systems BiologyShanghai UniversityShanghaiChina

Personalised recommendations