Polymers - Opportunities and Risks I pp 1-17

Part of the The Handbook of Environmental Chemistry book series (HEC, volume 11)

Plastics: Classification, Characterization, and Economic Data

Chapter

Abstract

This chapter defines “Environmentally Friendly Polymer Engineering” as the basic organizational system of the first volume of these two books. The classification of plastics, and a list of their main characteristics, follows. This chapter closes with some economic data.

Keywords

Characteristics of Plastics Characterization Classification Economic data Environmental Polymer Engineering 

References

  1. 1.
    Eyerer P, Hirth Th, Elsner P (eds) (2008) Polymer Engineering – Technologien und Praxis. Springer, BerlinGoogle Scholar
  2. 2.
    Eyerer P (2010) Kunststoffkunde. Vorlesungsmanuskript WS 2010/2011, 14. Aufl, Fraunhofer ICT, PfinztalGoogle Scholar
  3. 3.
    DIN 7724: Polymere Werkstoffe: Gruppierung polymerer Werkstoffe aufgrund ihres mechanischen Verhaltens. Ausgabe 1993/2004. Beuth Verlag, BerlinGoogle Scholar
  4. 4.
    Erhard G (2008) Konstruieren mit Kunststoffen, 4th edn. Carl Hanser Verlag, MünchenCrossRefGoogle Scholar
  5. 5.
    Osen E, Sckuhr M (1999) Thermoplastische Elastomere (TPE). Kunststoffe 89(1999)10, pp 176–179Google Scholar
  6. 6.
    Elsner P, Eyerer P, Hirth Th (eds) (2007) Kunststoffe – Eigenschaften und Anwendungen, 7th edn. Springer, Berlin, 1451 p, ISBN 3-540-72400-1Google Scholar
  7. 7.
    Plastics Europe Deutschland, Frankfurt, 2003, www.vke.de, www.plasticseurope.org
  8. 8.
    Brinkmann PHP, Krämer M, Kürten C (2001) Duroplastische Formmassen. Kunststoffe 91(2001)10, pp 347–359Google Scholar
  9. 9.
  10. 10.
    KI, Bad Homburg, www.kiweb.de
  11. 11.

Further ReadingPlastics: Classification, Characterization, and Economic Datas

  1. Auerbach SM et al (eds) (2004) Handbook of layered materials. Marcel Dekker, New YorkGoogle Scholar
  2. Baillie C et al (eds) (2003) Navigating the materials world: a guide to understanding materials behavior. Academic, LondonGoogle Scholar
  3. Banerjee S, Mukhopadhyay P (2007) Phase transformations: examples from titanium and zirconium alloys. Elsevier, AmsterdamGoogle Scholar
  4. Bansal NP (ed) (2005) Handbook of ceramic composites. Kluwer, Boston, MAGoogle Scholar
  5. Bargel H-J et al (2005) Werkstoffkunde. Springer, BerlinCrossRefGoogle Scholar
  6. Basu D (ed) (2001) Dictionary of material science and high energy physics. CRC, Boca Raton, FLGoogle Scholar
  7. Beddoes J, Bibby MJ (1999) Principles of metal manufacturing processes. Arnold, ParisGoogle Scholar
  8. Berins ML (1991) SPI plastics handbook. Kluwer, Boston, MAGoogle Scholar
  9. Blachere R, Pettit FS (1989) High temperature corrosion of ceramics. Noyes, Park Ridge, NJGoogle Scholar
  10. Brandrup J, Immergut EH, Grulke EA, Abe A (eds) (1999) Polymer handbook, 4th edn. Wiley, New YorkGoogle Scholar
  11. Brodsky MH (1997) Amorphous semiconductors. Springer, BerlinGoogle Scholar
  12. Brydson JA (1999) Plastics materials. Butterworth-Heinemann, Woburn, MAGoogle Scholar
  13. Burchell TD (1999) Carbon materials for advanced technologies. Pergamon, OxfordGoogle Scholar
  14. Busch K et al (eds) (2004) Photonic crystals: advances in design, fabrication, and characterization. Wiley, WeinheimGoogle Scholar
  15. Buschow KHJ et al (2001) Encyclopedia of materials: science and technology. Elsevier, AmsterdamGoogle Scholar
  16. Callister WD (2006) Materials science and engineering: introduction, 7th edn. Wiley, New YorkGoogle Scholar
  17. Chawla N, Chawla KK (2006) Metal matrix composites. Springer, BerlinGoogle Scholar
  18. Cheremisinoff NP (2007) Advances in engineering fluid mechanics. Gulf Publishing, Houston, TXGoogle Scholar
  19. Clark DE, Zoitos BK (eds) (1992) Corrosion of glass, ceramics and ceramic superconductors: principles, testing, characterization and applications. Noyes, Park Ridge, NJGoogle Scholar
  20. Cole TCH (2006) Wörterbuch Polymerwissenschaften: Kunststoffe, Harze, Gummi/plastics, resins, rubber, gums: Deutsch-Englisch, English-German. Springer, BerlinGoogle Scholar
  21. Congshan Z (ed) (2003) International symposium on photonic glass (ISPG 2002), 14–17 October 2002, Shanghai, China. SPIE, The International Society for Optical Engineering, Shanghai Institute of Optics and Fine Mechanics (ISOM)Google Scholar
  22. Czichos H, Saito T, Smith L (eds) (2006) Springer handbook of materials measurement methods. Springer, BerlinGoogle Scholar
  23. Ebewele R (2000) Polymer science and technology. CRC, Boca Raton, FLCrossRefGoogle Scholar
  24. El-Mallawany RAH (2002) Tellurite glasses handbook: physical properties and data. CRC, Boca Raton, FLGoogle Scholar
  25. Fasching G (2005) Werkstoffe für die Elektrotechnik: Mikrophysik, Struktur, Eigenschaften. Springer, BerlinGoogle Scholar
  26. Ferry M (2006) Direct strip casting of metals and alloys: processing, microstructure and properties. Woodhead Publishing, CambridgeCrossRefGoogle Scholar
  27. Fink JK (2005) Reactive polymers fundamentals and applications. William Andrew, Norwich, NYGoogle Scholar
  28. Franck A (2005) Kunststoffkompendium, 5th edn. Vogel Verlag, WürzburgGoogle Scholar
  29. Galanakis I et al (eds) (2005) Half-metallic alloys: fundamentals and applications. Springer, BerlinGoogle Scholar
  30. Gottstein G (2007) Physikalische Grundlagen der Materialkunde. Springer, BerlinGoogle Scholar
  31. Günter P et al (eds) (2006–2007) Photorefractive materials and their applications. Springer, BerlinGoogle Scholar
  32. Harper CA (2000) Modern plastics handbook. McGraw-Hill, New YorkGoogle Scholar
  33. Hongu T, Phillips GO (1997) New fibers. Woodhead Publishing, CambridgeCrossRefGoogle Scholar
  34. Hornbogen E, Jost N (2005) Fragen und Antworten zu “Werkstoffe”. Springer, BerlinGoogle Scholar
  35. Kainer KU (ed) (2006) Metal matrix composites: custom-made materials for automotive and aerospace engineering. Wiley, WeinheimGoogle Scholar
  36. Knovel (2003) International critical tables of numerical data, physics, chemistry and technology. In: Edward W. Washburn (ed) Prep. under the auspices of the International Research Council and the National Academy of Sciences by the National Research Council of the United States of America.Google Scholar
  37. Krenkel W (ed) (2003) Keramische Verbundwerkstoffe. Wiley, WeinheimGoogle Scholar
  38. Krenkel W, Naslain R, Schneider H (eds) (2001) High temperature ceramic matrix composites. Wiley, WeinheimGoogle Scholar
  39. Kumar A, Gupta RK (2003) Fundamentals of polymer engineering. CRC, Boca Raton, FLCrossRefGoogle Scholar
  40. Kutz M (ed) (2002) Handbook of materials selection. Wiley, New YorkGoogle Scholar
  41. Lurie KA (2007) An introduction to the mathematical theory of dynamic materials. Springer, BerlinGoogle Scholar
  42. Lynch CT (ed) (1989) Practical handbook of materials science. CRC, Boca Raton, FLGoogle Scholar
  43. Madelung O (2004) Semiconductors data handbook. Springer, BerlinCrossRefGoogle Scholar
  44. Martienssen W, Warlimont H (eds) (2005) Springer handbook of condensed matter and materials data. Springer, BerlinGoogle Scholar
  45. Martin J (ed) (2006) Materials for engineering. CRC, Boca Raton, FLGoogle Scholar
  46. McGrum NG, Buckley CP, Bucknall CB (1988) Principles of polymer engineering. Oxford University Press, OxfordGoogle Scholar
  47. Mitchell BS (2004) An introduction to materials engineering and science for chemical and material engineers. Wiley Interscience, Hoboken, NJGoogle Scholar
  48. Mohanty AK et al (eds) (2005) Natural fibers, biopolymers and biocomposites. CRC, Boca Raton, FLGoogle Scholar
  49. Morgan P (2005) Carbon fibers and their composites. CRC, Boca Raton, FLCrossRefGoogle Scholar
  50. Morris DG et al (eds) (2000) Intermetallics and superalloys. Wiley, WeinheimGoogle Scholar
  51. Müller G (ed) (2000) Ceramics – processing, reliability, tribology and wear. Wiley, WeinheimGoogle Scholar
  52. Müller W, Damm E (2009) Vielseitig und flexible – Multimodales Hochleistungs-Polyethylen. 10/2009, pp 46–53Google Scholar
  53. Nalwa HS (ed) (2001) Silicon-based materials and devices. Academic, San Diego, CAGoogle Scholar
  54. Ohring M (1992) The materials science of thin films. Academic, San Diego, CAGoogle Scholar
  55. Ostermann F (2007) Anwendungstechnologie Aluminium. Springer, BerlinGoogle Scholar
  56. Painter PC (2009) Essentials of polymer science and engineering. CHIPS, Weimar, TXGoogle Scholar
  57. Peabody W (2001) Peabody’s control of pipeline corrosion, 2nd edn. NACE International, Houston, TXGoogle Scholar
  58. Peters ST (ed) (1998) Handbook of composites. Chapman & Hall, LondonGoogle Scholar
  59. Pierson HO (1996) Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications. Noyes, Park Ridge, NJGoogle Scholar
  60. Qin Q-H (2007) Green’s function and boundary elements of multifield materials. Elsevier, AmsterdamGoogle Scholar
  61. Rao J (2002) Structural chemistry of glasses. Elsevier, AmsterdamGoogle Scholar
  62. Ravi S, Silva P (eds) (2003) Properties of amorphous carbon. Institution of Electrical Engineers, LondonGoogle Scholar
  63. Richard M. De la Rue et al (ed) (2006) Photonic crystal materials and devices III: 3–6 April 2006, Strasbourg, France, SPIE EuropeGoogle Scholar
  64. Roberge PR (2000) Handbook of corrosion engineering. McGraw-Hill, New YorkGoogle Scholar
  65. Roos E, Maile K (2005) Werkstoffkunde für Ingenieure: Grundlagen, Anwendung, Prüfung. Springer, BerlinGoogle Scholar
  66. Rosato DV, Rosato MG, Rosato DV (2000) Concise encyclopedia of plastics. Kluwer, Boston, MACrossRefGoogle Scholar
  67. Rudin A (1999) Elements of polymer science and engineering. Elsevier, AmsterdamGoogle Scholar
  68. Rühle M, Gleiter H (eds) (2000) Interface controlled materials. Wiley, WeinheimGoogle Scholar
  69. Schwartz M (2002) Encyclopedia of materials, parts and finishes. CRC, Boca Raton, FLCrossRefGoogle Scholar
  70. Schweitzer PA (2006) Paint and coatings: applications and corrosion resistance. Taylor and Francis, LondonGoogle Scholar
  71. Searle T (ed) (1998) Properties of amorphous silicon and its alloys. The Institution of Electrical Engineers, LondonGoogle Scholar
  72. Shaw MT, MacKnight WJ (2005) Introduction to polymer viscoelasticity. Wiley, New YorkCrossRefGoogle Scholar
  73. Shreir LL, Jarman RA, Burstein GT (1994) Corrosion (metal environment reaction), 2nd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  74. Shreir LL, Jarman RA, Burstein GT (1994, 2000) Corrosion (metal environment reaction), 1st edn. Butterworth-Heinemann, OxfordGoogle Scholar
  75. Smart R, Nowotny J (eds) (1998) Ceramic interfaces: properties and applications. IOM Communications, LondonGoogle Scholar
  76. Springborg M, Dong Y (2007) Metallic chains/chains of metals. Elsevier, AmsterdamGoogle Scholar
  77. Talbot D, Talbot J (1998) Corrosion science and technology. CRC, Boca Raton, FLGoogle Scholar
  78. Thomson T (2005) Polyurethanes as speciality chemicals – principles and applications. CRC, Boca Raton, FLGoogle Scholar
  79. Vincenzini P et al (eds) (2006) Diamond and other new carbon materials. IV 2006: Part of CIMTEC 2006 international ceramics congress and 4th forum on new materials, June 4–9, 2006, Acireale, Sicily, Italy. Trans Tech PublicationsGoogle Scholar
  80. Walter TH, Müller R-U (2009) Für den richtigen Durchblick – Optische Teile. Kunststoffe 10/2009, pp 72–76, Hanser VerlagGoogle Scholar
  81. Wasa K, Kitabatake M, Adachi H (2004) Thin film materials technology. William Andrew, Norwich, NYGoogle Scholar
  82. Wessel JK (ed) (2004) The handbook of advanced materials: enabling new designs. Wiley Interscience, Hoboken, NJGoogle Scholar
  83. Winston Revie R (ed) (2000) Uhlig’s corrosion handbook. Wiley, New YorkGoogle Scholar
  84. Wood JV et al (eds) (2000) Materials development and processing: bulk, amorphous materials, undercooling and powder metallurgy. Wiley, WeinheimGoogle Scholar

The Economic Significance of Plastics

  1. Prasad PN et al (eds) (1998) Science and technology of polymers and advanced materials: emerging technologies and business opportunities. Plenum, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Fraunhofer-Institut für Chemische Technologie ICTPfinztalGermany

Personalised recommendations