Mining Intervals of Graphs to Extract Characteristic Reaction Patterns

  • Frédéric Pennerath
  • Géraldine Polaillon
  • Amedeo Napoli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5255)

Abstract

The article introduces an original problem of knowledge discovery from chemical reaction databases that consists in identifying the subset of atoms and bonds that play an effective role in a given chemical reaction. The extraction of the resulting characteristic reaction pattern is then reduced to a graph-mining problem: given lower and upper bound graphs gl and gu, the search of best patterns in an interval of graphs consists in finding among connected graphs isomorphic to a subgraph of gu and containing a subgraph isomorphic to gl, best patterns that maximize a scoring function and whose score depends on the frequency of the pattern in a set of examples. A method called CrackReac is then proposed to extract best patterns from intervals of graphs. Accuracy and scalability of the method are then evaluated by testing the method on the extraction of characteristic patterns from reaction databases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rose, J.R., Gasteiger, J.: Horace: An automatic system for the hierarchical classification of chemical reactions. Journal of Chemical Information and Computer Sciences 34(1), 74–90 (1994)Google Scholar
  2. 2.
    Hendrickson, J.B.: Comprehensive system for classification and nomenclature of organic reactions. Journal of Chemical Information and Computer Sciences 37(5), 852–860 (1997)Google Scholar
  3. 3.
    Satoh, H., Nakata, T.: Knowledge discovery on chemical reactivity from experimental reaction information. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 470–477. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent substructures from graph data. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: ICDM 2001: Proceedings of the 2001 IEEE International Conference on Data Mining, pp. 313–320 (2001)Google Scholar
  6. 6.
    Yan, X., Han, J.: Gspan: Graph-based substructure pattern mining. In: ICDM 2002: Proceedings of the 2002 IEEE International Conference on Data Mining, Washington, DC, USA, p. 721. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  7. 7.
    Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining can make a difference. In: KDD 2004: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 647–652. ACM Press, New York (2004)CrossRefGoogle Scholar
  8. 8.
    Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length and background knowledge. Journal of Artificial Intelligence Research 1, 231–255 (1994)Google Scholar
  9. 9.
    Fischer, I., Meinl, T.: Graph based molecular data mining - an overview. In: SMC (5), pp. 4578–4582. IEEE, Los Alamitos (2004)Google Scholar
  10. 10.
    Srinivasan, A., Muggleton, S.H., Sternberg, M.J.E., King, R.D.: Theories for mutagenicity: a study in first-order and feature-based induction. Artificial Intelligence 85(1-2), 277–299 (1996)CrossRefGoogle Scholar
  11. 11.
    Dehaspe, L., Toivonen, H., King, R.D.: Finding frequent substructures in chemical compounds. In: Agrawal, R., Stolorz, P., Piatetsky-Shapiro, G. (eds.) 4th International Conference on Knowledge Discovery and Data Mining, pp. 30–36. AAAI Press, Menlo Park (1998)Google Scholar
  12. 12.
    Vladutz, G.: Do we still need a classification of reactions? In: Willet, P. (ed.) Modern Approaches to Chemical Reaction Searching, pp. 202–220. Gower Publishing (1986)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2008

Authors and Affiliations

  • Frédéric Pennerath
    • 1
    • 3
  • Géraldine Polaillon
    • 2
  • Amedeo Napoli
    • 3
  1. 1.SupélecMetzFrance
  2. 2.SupélecGif-sur-YvetteFrance
  3. 3.Orpailleur team, LORIAVandoeuvre-lès-Nancy CedexFrance

Personalised recommendations