A Direct Algorithm for Multi-valued Bounded Model Checking

  • Jefferson O. Andrade
  • Yukiyoshi Kameyama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5311)

Abstract

Multi-valued Model Checking is an extension of classical, two-valued model checking with multi-valued logic. Multi-valuedness has been proved useful in expressing additional information such as incompleteness, uncertainty, and many others, but with the cost of time and space complexity. This paper addresses this problem, and proposes a new algorithm for Multi-valued Model Checking. While Chechik et al. have extended BDD-based Symbolic Model Checking algorithm to the multi-valued case, our algorithm extends Bounded Model Checking (BMC), which can generate a counterexample of minimum length efficiently (if any). A notable feature of our algorithm is that it directly generates conjunctive normal forms, and never reduces multi-valued formulas into many slices of two-valued formulas. To achieve this feature, we extend the BMC algorithm to the multi-valued case and also devise a new translation of multi-valued propositional formulas. Finally, we show experimental results and compare the performance of our algorithm with that of a reduction-based algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Biere, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic Model Checking Using SAT Procedures Instead of BDDs. In: Design Automation Conference, pp. 317–320 (1999)Google Scholar
  3. 3.
    Chechik, M., Devereaux, B., Easterbrook, S.: Implementing a multi-valued symbolic model checker. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 404–419. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Chechik, M., Devereaux, B., Easterbrook, S., Gurfinkel, A.: Multi-valued symbolic model-checking. ACM Transaction on Software Engineering and Methodology 2(4), 371–408 (2003)CrossRefGoogle Scholar
  5. 5.
    Chechik, M., Devereaux, B., Easterbrook, S., Lai, Y.C., Petrovykh, V.: Efficient multiple-valued model-checking using lattice representations. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 441–455. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Chechik, M., Gurfinkel, A., Devereaux, B., Lai, A., Easterbrook, S.: Data structures for symbolic multi-valued model-checking. Form. Methods Syst. Des. 29(3), 295–344 (2006)CrossRefMATHGoogle Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  8. 8.
    Easterbrook, S., Chechik, M.: A framework for multi-valued reasoning over inconsistent viewpoints. In: International Conference on Software Engineering, pp. 411–420 (2001)Google Scholar
  9. 9.
    Een, N., Sorensen, N.: The MiniSat homepage, http://minisat.se/
  10. 10.
    Fitting, M.C.: Many-valued modal logics. Fundamenta Informaticae XV, 235–254 (1991)MathSciNetMATHGoogle Scholar
  11. 11.
    Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge. DIMACS Series In Discrete Mathematics and Theoretical Computer Science, vol. 26. AMS (1996)Google Scholar
  12. 12.
    Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation. Journal of Symbolic Computation 2, 293–304 (1986)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jefferson O. Andrade
    • 1
  • Yukiyoshi Kameyama
    • 1
  1. 1.Department of Computer ScienceUniversity of TsukubaJapan

Personalised recommendations