Advertisement

Tensor Visualization and Defect Detection for Nematic Liquid Crystals using Shape Characteristics

  • T. J. Jankun-Kelly
  • Song Zhang
  • A. C. Callan-Jones
  • Robert A. Pelcovits
  • V. A. Slavin
  • David H. Laidlaw
Part of the Mathematics and Visualization book series (MATHVISUAL)

Summary

Two alternate sets of tensor shape characteristics are introduced for the study of nematic liquid crystals, a little studied problem in tensor visualization. One set of characteristics are based on the physics of the liquid crystal system (a real, symmetric, traceless tensor); the other set is an application of the well known Westin DT-MRI shape characteristics. These shape metrics are used both for direct tensor visualization and for detection of defects within the liquid crystal matrix.

Keywords

Liquid Crystal Defect Detection Nematic Liquid Crystal Topological Defect Defect Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank Ketan Mehta for his work on unstructured grid-based disclination detection and Gordon Kindlmann for our in-depth discussions. Rajendran Mohanraj and Huangli Wu, formerly of the Mississippi State SimCenter, provided the human Ig anitibody simulation data. This work was partially funded through the National Science Foundation EPSCoR program via award No. 0132618.

References

  1. [1]
    P. J. Collings. Liquid Crystals: Nature’s Delicate Phase of Matter, 2nd. edition. Priceton University Press, Princeton, NJ, 2002.Google Scholar
  2. [2]
    P. K. Mukherjee. Critical behavior of uniaxial-biaxial nematic phase transition. The Journal of Chemical Physics, 109(7):2941–2946, 1998.CrossRefGoogle Scholar
  3. [3]
    I. Dierking. Textures of Liquid Crystals. Wiley, New York, 2003.CrossRefGoogle Scholar
  4. [4]
    N. Morrtram and C. Newton. Introduction to Q-tensor theory. Technical Report, Department of Mathematics, University of Strathclyde, 2004.Google Scholar
  5. [5]
    P. G. de Gennes. The Physics of Liquid Crystals. Clarendon, Oxford, 1974.Google Scholar
  6. [6]
    R. J. Low. Measuring order and biaxiality. European Journal of Physics, 23:111–117, 2002.MATHCrossRefGoogle Scholar
  7. [7]
    C. Zannoni. Distribution functions and order parameters. In G.R. Luckhurst and G.W. Gray, editors, The Molecular Physics of Liquid Crystals, chapter 3, Academic Press, London, pp. 51–83, 1979.Google Scholar
  8. [8]
    C.F. Westin, S. Peled, H. Gudbjartsson, R. Kikinis, and F. A. Jolesz. Geometrical diffusion measures for MRI from tensor basis analysis. In Proceedings of the Fifth Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM ’97) , Vancouver Canada, p. 1742, 1997.Google Scholar
  9. [9]
    G. Kindlmann. Visualization and Analysis of Diffusion Tensor Fields. PhD thesis, University of Utah, 2004.Google Scholar
  10. [10]
    T.J. Jankun-Kelly and K. Mehta. Superellipsoid-based, real symmetric traceless tensor glyphs motivated by nematic liquid crystal alignment visualization. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization/Information Visualization 2006) , 12(5):1197–1204, 2006.CrossRefGoogle Scholar
  11. [11]
    V. A. Slavin, R. A. Pelcovits, G. Loriot, A. Callan-Jones, and D. H. Laidlaw. Techniques for the visualization of topological defect behavior in nematic liquid crystals. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization/Information Visualization 2006) , 12(5):1323–1328, 2006.CrossRefGoogle Scholar
  12. [12]
    A. C. Callan-Jones, R. A. Pelcovits, V. Slavin, S. Zhang, D. H. Laidlaw, and G. B. Loriot. Simulation and visualization of topological defects in nematic liquid crystals. Physical Review E, 74(6), 2006.Google Scholar
  13. [13]
    S. Zhang, D. H. Laidlaw, and G. L. Kindlmann. Diffusion tensor MRI visualization. In C. D. Hansen and C. R. Johnson, editors, The Visualization Handbook, chapter 16, Elsevier Academic Press, Amsterdam, pp. 327–340, 2004.Google Scholar
  14. [14]
    J. E. Anderson, P. Watson, and P. J. Bos. Comparisons of the vector method and tensor method for simulating liquid crystal devices. Liquid Crystals, 28:109–115, 2001.CrossRefGoogle Scholar
  15. [15]
    A. Sonnet, A. Kilian, and S. Hess. Alignment tensor versus director: Description of defects in nematic liquid crystals. Physical Review E, 52:718–722, 1995.CrossRefGoogle Scholar
  16. [16]
    M. Gregory Forest, Q. Wang, and H. Zhou. Methods for the exact construction of mesoscale spatial structures in liquid crystal polymers. Physica D, 152–153:288–309, 2001.CrossRefGoogle Scholar
  17. [17]
    G. L. Kindlmann. Superquadric tensor glyphs. In O. Deussen, C. Hansen, D. A. Keim, and D. Saupe, editors, Proceedings of the Eurographics/IEEE VGTC Symposium on Visualization (VisSym ’04) , pp. 147–154, 2004.Google Scholar
  18. [18]
    A. H. Barr. Superquadrics and angle-preserving transformations. IEEE Computer Graphics and Applications, 1(1):11–22, 1981.CrossRefGoogle Scholar
  19. [19]
    C. D. Shaw, D. S. Ebert, J. M. Kukla, A. Zwa, I. Soboroff, and D. Aaron Roberts. Data visualization using automatic, perceptually-motivated shapes. In Proceedings of Visual Data Exploration and Analysis. SPIE, 11 April 1998.Google Scholar
  20. [20]
    C. D. Shaw, J. Hall, C. Blahut, D. S. Ebert, and D. Aaron Roberts. Using shape to visualize multivariate data. In Proceedings of the Workshop on New Paradigms in Information Visualization and Manipulation (NPIVM-99) , ACM Press, New York, pp. 17–20, 1999.Google Scholar
  21. [21]
    R. L. Burden and J. Douglas Faires. Numerical Analysis, chapter 1, PWS Publishing Co., pp. 17–18, 1994.Google Scholar
  22. [22]
    H.Wu and R. Mohanraj. Computational simulations for study of a liquidcrystal- based sensor system. In J. Graef, H. Lim, R. Shivaji, B. Soni, and J. Zhu, editors, Proceedings of the Sixth Mississippi State-UAB Conference on Differential Equations and Compuational Simulations, May 2005.Google Scholar
  23. [23]
    T. Tsuji and A. D. Rey. Orientation mode selection mechanisms for sheared nematic liquid crystalline materials. Physical Review E, 57(5):5609–5625, 1998.CrossRefGoogle Scholar
  24. [24]
    J. L. Billeter, A. M. Smondyrev, G. B. Loriot, and R. A. Pelcovits. Phaseordering dynamics of the Gay-Berne nematic liquid crystal. Physical Review E, 60, 1999.Google Scholar
  25. [25]
    J. G. Gay and B. J. Berne. Modification of the overlap potential to mimic a linear site-site potential. Journal of Chemical Physics, 74(6):3316–3319, 1981.CrossRefGoogle Scholar
  26. [26]
    M. Zapotocky, P. M. Goldbart, and N. Goldenfeld. Kinetics of phase ordering in uniaxial and biaxial nematic films. Physical Review E, 51(2):1216–1235, 1995.CrossRefGoogle Scholar
  27. [27]
    C. Chiccoli, O. D. Lavrentovich, P. Pasini1, and C. Zannoni. Monte carlo simulations of stable point defects in hybrid nematic films. Physical Review Letters, 79(22):4401–4404, 1997.CrossRefGoogle Scholar
  28. [28]
    K. Mehta and T. J. Jankun-Kelly. Detection and visualization of defects in 3d unstructed models of nematic liquid crystals. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization/ Information Visualization 2006) , 12(5):1045–1052, 2006.CrossRefGoogle Scholar
  29. [29]
    S. Zhang, C. Demiralp, and D. H. Laidlaw. Visualizing diffusion tensor MR images using streamtubes and streamsurfaces. IEEE Transactions on Visualization and Computer Graphics, 9(4):454–462, 2003.CrossRefGoogle Scholar
  30. [30]
    C. Upson, T. Faulhaber Jr., D. Kamins, D. H. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, and A. van Dam. The application visualization system: A computational e nvironment for scientific visualization. Computer Graphics and Applications, 9(4):30–42, 1989.CrossRefGoogle Scholar
  31. [31]
    N. Schopohl and T. J. Sluckin. Erratum: Defect core structure in nematic liquid crystals [Physical Review Letters 59, 2582 (1987)]. Physical Review Letters, 60:755, 1988.CrossRefGoogle Scholar
  32. [32]
    M. P. Allen, M. A. Warren, M. R. Wilson, A. Sauron, and W. Smith. Molecular dynamics calculation of elastic constants in Gay-Berne nematic liquid crystals. Journal of Chemical Physics, 105:2850–2858, 1996.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • T. J. Jankun-Kelly
    • 1
  • Song Zhang
    • 1
  • A. C. Callan-Jones
    • 2
  • Robert A. Pelcovits
    • 3
  • V. A. Slavin
    • 4
  • David H. Laidlaw
    • 4
  1. 1.Department of Computer Science and Engineering, Bagley College of EngineeringMississippi State UniversityMississippi StateUSA
  2. 2.Institut Curie, UMR CNRS 168Paris Cedex 05France
  3. 3.Department of PhysicsBrown UniversityProvidenceUSA
  4. 4.Department of Computer ScienceBrown UniversityProvidenceUSA

Personalised recommendations