Towards a Concrete Security Proof of Courtois, Finiasz and Sendrier Signature Scheme

  • Léonard Dallot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4945)


Courtois, Finiasz and Sendrier proposed in 2001 a practical code-based signature scheme. We give a rigorous security analysis of a modified version of this scheme in the random oracle model. Our reduction involves two problems of coding theory widely considered as difficult, the Goppa Parametrized Bounded Decoding and the Goppa Code Distinguishing.


Hash Function Signature Scheme Random Oracle Parity Check Matrix Security Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  2. 2.
    Bellare, M., Rogaway, P.: The exact security of digital signatures – how to sign with rsa and rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070. pp. 399–416. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability of certain coding problems. IEEE Trans. Inform. Th. 24 (1978)Google Scholar
  4. 4.
    Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology – CRYPTO 1982, Lecture Notes Computer Science, p. 153. Springer, Heidelberg (1982)Google Scholar
  5. 5.
    Chaum, D., van Anderpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)Google Scholar
  6. 6.
    Coron, J.S.: On the exact security of full domain hash. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229–236. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inform. Th. 22(6), 644–654 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Finiasz, M.: Nouvelles constructions utilisant des codes correcteurs d’erreurs en cryptographie à clef publique. PhD thesis, INRIA – Ecole Polytechnique (October 2004) (in French)Google Scholar
  10. 10.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Systems Sciences 28(2), 270–299 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Li, Y.X., Deng, R.H., Wang, X.M.: On the equivalence of McEliece’s and Niederreiter’s public-key cryptosystems. IEEE Trans. Inform. Th. 40(1), 271–273 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland mathematical library, Amsterdam (1977)zbMATHGoogle Scholar
  14. 14.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Technical report, DSN Progress report # 42-44, Jet Propulsion Laboratory, Pasadena, Californila (1978)Google Scholar
  15. 15.
    Menezes, A.J., Vanstone, S.A., van Oorschot, P.C.: Handbook of Applied Cryptography. CRC Press, Inc., Boca Raton (1996)Google Scholar
  16. 16.
    Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory 15(2), 159–166 (1986)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public key cryptosystems. CACM 21 (1978)Google Scholar
  18. 18.
    Sendrier, N.: Cryptosystèmes à clé publique basés sur les codes correcteurs d’erreurs. Habilitation à diriger les recherches, Université Pierre et Marie Curie, Paris 6, Paris, France ( March 2002) (in French)Google Scholar
  19. 19.
    Shoup, V.: Sequences of games: a tool for taming complexity in security proofs (manuscript, November 2004) (revised, May 2005; January 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Léonard Dallot
    • 1
  1. 1.GREYC, UMR 6072, CaenFrance

Personalised recommendations