Advertisement

The GPS Identification Scheme Using Frobenius Expansions

  • Waldyr D. BenitsJr.
  • Steven D. Galbraith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4945)

Abstract

The Girault-Poupard-Stern (GPS) identification scheme is designed for public key cryptography on very restricted devices. We propose a variant of GPS for Koblitz elliptic curves using Frobenius expansions. The idea is to use Frobenius expansions throughout the protocol, so there is no need to convert between integers and Frobenius expansions. We give a security analysis of the proposed scheme.

Keywords

Elliptic Curves Frobenius expansions GPS identificaion scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of elliptic and hyperelliptic curve cryptography. Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2006)zbMATHGoogle Scholar
  2. 2.
    Benits, W.: Applications of Frobenius expansions in elliptic curve cryptography, PhD thesis in preparationGoogle Scholar
  3. 3.
    Benits, W., Galbraith, S.: The Frobenius expansion DLP, preprintGoogle Scholar
  4. 4.
    Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833. pp. 29–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user language. Journal of Symbolic Computation 24, 235–265 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ebeid, N., Hasan, M.A.: On τ-adic representations of integers. Designs, Codes and Cryptography 45(3), 271–296 (2007)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of Cryptology 1(2), 77–94 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature schemes based on groups of unknown order. J. Crypt. 19(4), 463–487 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  10. 10.
    Girault, M., Lefranc, D.: Public key authentication with one (online) single addition. In: Joye, M., et al. (eds.) CHES 2004. LNCS, vol. 3156. pp. 413–427. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576. pp. 279–287. Springer, Heidelberg (1992)Google Scholar
  12. 12.
    Müller, V.: Fast multiplication on elliptic curves over small fields of characteristic two. Journal of Cryptology 11(4), 219–234 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Okamoto, T., Katsuno, H., Okamoto, E.: A fast signature scheme based on new on-line computation. In: Boyd, C., Mao, W. (eds.) Information Security. LNCS, vol. 2581. pp. 111–121. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Poupard, G., Stern, J.: Security analysis of a practical “on the fly” authentication and signature generation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403. pp. 422–436. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Rivest, R.L., Cormen, T.H., Leiserson, C.E., Stein, C.: Introduction to algorithms, 2nd edn. MIT Press and McGraw-Hill (2001)Google Scholar
  16. 16.
    Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435. pp. 239–252. Springer, Heidelberg (1990)Google Scholar
  17. 17.
    Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139. pp. 355–367. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Solinas, J.A.: An improved algorithm for arithmetic on a family of elliptic curves. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 357–371. Springer, Heidelberg (1997)Google Scholar
  20. 20.
    Solinas, J.A.: Efficient arithmetic on Koblitz curves. Des. Codes Cryptography 19(2-3), 195–249 (2000)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Waldyr D. BenitsJr.
    • 1
  • Steven D. Galbraith
    • 1
  1. 1.Mathematics DepartmentRoyal Holloway University of LondonEghamUK

Personalised recommendations