Sharemind: A Framework for Fast Privacy-Preserving Computations

  • Dan Bogdanov
  • Sven Laur
  • Jan Willemson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5283)

Abstract

Gathering and processing sensitive data is a difficult task. In fact, there is no common recipe for building the necessary information systems. In this paper, we present a provably secure and efficient general-purpose computation system to address this problem. Our solution—Sharemind—is a virtual machine for privacy-preserving data processing that relies on share computing techniques. This is a standard way for securely evaluating functions in a multi-party computation environment. The novelty of our solution is in the choice of the secret sharing scheme and the design of the protocol suite. We have made many practical decisions to make large-scale share computing feasible in practice. The protocols of Sharemind are information-theoretically secure in the honest-but-curious model with three computing participants. Although the honest-but-curious model does not tolerate malicious participants, it still provides significantly increased privacy preservation when compared to standard centralised databases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserving data mining algorithms. In: Proc. of PODS 2001, pp. 247–255 (2001)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Privacy-preserving data mining. SIGMOD Rec. 29(2), 439–450 (2000)CrossRefGoogle Scholar
  3. 3.
    Beaver, D.: Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty minority. Journal of Cryptology 4(2), 75–122 (1991)CrossRefMATHGoogle Scholar
  4. 4.
    Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience (extended abstract). In: Proc. of PODC 1994, pp. 183–192 (1994)Google Scholar
  5. 5.
    Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. Cryptology ePrint Archive, Report 2008/289 (2008)Google Scholar
  6. 6.
    Bogetoft, P., Damgård, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A practical implementation of secure auctions based on multiparty integer computation. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13(1), 143–202 (2000)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Proc. of FOCS 2001, pp. 136–145 (2001)Google Scholar
  9. 9.
    Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation over rings. In: Proc. of EUROCRYPT 2003. LNCS, vol. 4107, pp. 596–613 (2003)Google Scholar
  10. 10.
    Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Dodis, Y., Micali, S.: Parallel reducibility for information-theoretically secure computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 74–92. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Du, W., Atallah, M.J.: Protocols for secure remote database access with approximate matching. In: ACMCCS 2000, Athens, Greece, November 1-4 (2000)Google Scholar
  13. 13.
    Evfimievski, A.V., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of association rules. In: Proc. of KDD 2002, pp. 217–228 (2002)Google Scholar
  14. 14.
    Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in perfect multiparty computation. Journal of Cryptology 13(1), 31–60 (2000)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation. Cryptology ePrint Archive, Report 2004/175 (2004)Google Scholar
  16. 16.
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system. In: Proc. of USENIX Security Symposium, pp. 287–302 (2004)Google Scholar
  17. 17.
    The SHAREMIND project web page (2007), http://sharemind.cs.ut.ee
  18. 18.
    Yang, Z., Wright, R.N., Subramaniam, H.: Experimental analysis of a privacy-preserving scalar product protocol. Comput. Syst. Sci. Eng. 21(1) (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dan Bogdanov
    • 1
    • 2
  • Sven Laur
    • 1
  • Jan Willemson
    • 1
    • 2
  1. 1.University of TartuTartuEstonia
  2. 2.Cybernetica ASTallinnEstonia

Personalised recommendations