Advertisement

Azobenzene–Metal Junction as a Mechanically and Opto–Mechanically Driven Switch

  • Martin Konôpka
  • Robert Turanský
  • Nikos L. Doltsinis
  • Dominik Marx
  • Ivan Štich
Conference paper

Summary

Mechanically and opto–mechanically controlled azobenzene (AB) switch based on AB–metal break–junction have been studied using ab–initio simulations. It was found that both cistrans and transcis mechanically driven switchings in the lowest singlet state are possible. Bidirectional optical switching of mechanically strained AB through first excited singlet state was also predicted provided that the length of the molecule is adjusted towards the target isomer equilibrium length.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ellenbogen, J.C., Love, J.C.: Architectures for Molecular Electronic Computers. IEEE, New York, (2000) Google Scholar
  2. 2.
    Joachim, C., Gimzewski, J.K., Aviram, A.: Electronics using hybrid–molecular and mono–molecular devices. Nature, 408, 541–548 (2000) CrossRefGoogle Scholar
  3. 3.
    Park, J., Pasupathy, A.N., Goldsmith, J.I., Chang, C., Yaish, Y., Petta, J.R., Rinkoski, M., Sethna, J.P., Abruña, H.D., McEuen, P.L., Ralph, D.C.: Coulomb blockade and the Kondo effect in single–atom transistors. Nature, 417, 722–725 (2002) CrossRefGoogle Scholar
  4. 4.
    Liang, W., Shores, M.P., Bockrath, M., Long, J.R., Park, H.: Kondo resonance in a single–molecule transistor. Nature, 417, 725–729 (2002) CrossRefGoogle Scholar
  5. 5.
    Dürr, H., Bouas-Laurent, H. (ed.): Photochromism. Molecules and Systems. Elsevier, Amsterdam (1990). Google Scholar
  6. 6.
    Hartley, G.S.: The Cis–form of Azobenzene. Nature, 140, 281–281 (1937) CrossRefGoogle Scholar
  7. 7.
    Hugel, T., Holland, N.B., Cattani, A., Moroder, L., Seitz, M., Gaub, H.E.: Single–Molecule Optomechanical Cycle. Science, 296, 1103–1106 (2002) CrossRefGoogle Scholar
  8. 8.
    Konôpka, M., Rousseau, R., Štich, I., Marx, D.: Detaching Thiolates from Copper and Gold Clusters: Which Bonds to Break? J. Am. Chem. Soc., 126, 12103–12111 (2004) CrossRefGoogle Scholar
  9. 9.
    Konôpka, M., Rousseau, R., Štich, I., Marx, D.: Electronic Origin of Disorder and Diffusion at a Molecule–Metal Interface: Self–Assembled Monolayers of CH3–S on Cu(111). Phys. Rev. Lett., 95, 096102–1–4 (2005) CrossRefGoogle Scholar
  10. 10.
    Dulić, D., van der Molen, S.J., Kudernac, T., Jonkman, H.T., de Jong, J.J.D., Bowden, T.N., van Esch, J., Feringa, B.L., van Wees, B.J.: One–Way Optoelectronic Switching of Photochromic Molecules on Gold. Phys. Rev. Lett., 91, 207402–1–4 (2003) CrossRefGoogle Scholar
  11. 11.
    Smit R.H.M., Noat, Y., Untiedt, C., Lang, N.D., van Hemert, M.C., van Ruitenbeek, J.M.: Measurement of the conductance of a hydrogen molecule. Nature, 419, 906–909 (2002) CrossRefGoogle Scholar
  12. 12.
    Cimelli, C., Granucci, G., Persio, M.: Are azobenzenophanes rotation–restricted? J. Chem. Phys., 123, 174317–1–10 (2005) CrossRefGoogle Scholar
  13. 13.
    Nonnenberg, C., Gaub, H., Frank, I.: First–Principles Simulation of the Photoreaction of a Capped Azobenzene: The Rotational Pathway is Feasible. ChemPhysChem, 7, 1455–1461 (2006) CrossRefGoogle Scholar
  14. 14.
    Konôpka, M., Turanský, R., Reichert, J., Fuchs, H., Marx, D., Štich, I.: Mechanochemistry and Thermochemistry are Different: Stress–Induced Strengthening of Chemical Bonds. Phys. Rev. Lett., 100, 1155031–1–4 (2008) CrossRefGoogle Scholar
  15. 15.
    Turanský, R., Konôpka, M., Reichert, J., Fuchs, H., Marx, D., Štich, I.: Mechanical and Opto–Mechanical Switching of Azobenzene Metal–Organic Junctions. (In preparation) Google Scholar
  16. 16.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 77, 3865–3868 (1996); Phys. Rev. Lett., 78, 1396–1396 (1997) CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Jacobsen, K.W., Norskov, J.K., Puska, M.J.: Interatomic interactions in the effective–medium theory. Phys. Rev. B, 35, 7423–7442 (1987) CrossRefGoogle Scholar
  19. 19.
    Frank, I., Hutter, J., Marx, D., Parrinello, M.: Molecular dynamics in low–spin excited states. J. Chem. Phys., 108, 4060–4069 (1998) CrossRefGoogle Scholar
  20. 20.
    Grimm, S., Nonnenberg, C., Frank, I.: Restricted open–shell Kohn–Sham theory for ππ * transitions. I. Polyenes, cyanines, and protonated imines. J. Chem. Phys., 119, 11574–11584 (2003) CrossRefGoogle Scholar
  21. 21.
    Böckmann, M., Doltsinis, N.L., Marx, D.: Submitted (2007) Google Scholar
  22. 22.
    CPMD, Copyright IBM Corp 1990–2006, Copyright MPI für Festkörperforschung Stuttgart 1997–2001 Google Scholar
  23. 23.
    Marx, D., Hutter, J.: Ab initio molecular dynamics: Theory and Implementation. In: Grotendorst, J. (ed) Modern Methods and Algorithms of Quantum Chemistry. NIC, FZ Jülich (2000), pp. 301-449; for downloads see: www.theochem.ruhr-uni-bochum.de/go/cprev.html Google Scholar
  24. 24.
    Goedecker, S., Teter, M., Hutter, J.: Separable dual–space Gaussian pseudopotentials. Phys. Rev. B, 54, 1703–1710 (1996) CrossRefGoogle Scholar
  25. 25.
    Hartwigsen, C., Goedecker, S., Hutter, J.: Relativistic separable dual–space Gaussian pseudopotentials from H to Rn. Phys. Rev. B, 58, 3641–3662 (1998) CrossRefGoogle Scholar
  26. 26.
    The gROKS nπ * excitation energies are calculated to be 2.21 eV for trans AB (2.13 eV for cis AB) compared to 2.82 eV (2.91 eV) from gas–phase experiments [28] and 2.84 eV (3.0 eV) from correlated Coupled Cluster calculations [33]. Similar errors are expected for DAB isomers. Google Scholar
  27. 27.
    Turanský, R., Konôpka, M., Reichert, J., Fuchs, H., Marx, D., Štich, I.: (In preparation) Google Scholar
  28. 28.
    Andersson, J.-Å., Petterson, R., Tegnér, L.: Flash photolysis experiments in the vapour phase at elevated temperatures I: spectra of azobenzene and the kinetics of its thermal cis–trans isomerization. J. Photochem., 20, 17–32 (1982) CrossRefGoogle Scholar
  29. 29.
    Cembran, A., Bernardi, F., Garavelli, M., Gagliardi, L., Orlandi, G.: On the Mechanism of the cis–trans Isomerization in the Lowest Electronic States of Azobenzene: S0, S1, and T1. J. Am. Chem. Soc., 126, 3234–3243 (2004) CrossRefGoogle Scholar
  30. 30.
    Gagliardi, L., Orlandi G., Bernardi, F., Cembran, A., Garavelli, M.: A theoretical study of the lowest electronic states of azobenzene: the role of torsion coordinate in the cis–trans photoisomerization. Theor. Chem. Acc, 111, 363–372 (2004) Google Scholar
  31. 31.
    Choi, B.-Y., Kahng, S.-J., Kim, S., Kim, H., Kim, H.W., Song, Y.J., Ihm, J., Kuk, Y.: Conformational Molecular Switch of the Azobenzene Molecule: A Scanning Tunneling Microscopy Study. Phys. Rev. Lett., 96, 156106–1–4 (2006) CrossRefGoogle Scholar
  32. 32.
    Reichert, J., Klein, S., Konôpka, M., Turanský, R., Marx, D., Štich, I., Fuchs, H.: Conductance of an Illuminated Metal–Molecule–Metal Junction Utilizing a Near–Field Probe as Counterelectrode. [Submitted to Rev. Sci. Inst. (2008)] Google Scholar
  33. 33.
    Fliegl, H., Köhn, A., Hättig, C., Ahlrichs, R.: Ab Initio Calculations of the Vibrational and Electronic Spectra of trans– and cis–Azobenzene. J. Am. Chem. Soc., 125, 9821–9827 (2003) CrossRefGoogle Scholar
  34. 34.
    Hutter, J., Curioni, A.: Car–Parrinello Molecular Dynamics on Massively Parallel Computers. ChemPhysChem, 6, 1788–1793 (2005) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martin Konôpka
    • 1
  • Robert Turanský
    • 1
  • Nikos L. Doltsinis
    • 2
    • 3
  • Dominik Marx
    • 2
  • Ivan Štich
    • 1
    • 4
  1. 1.Center for Computational Materials Science, Department of PhysicsSlovak University of Technology (FEI STU)BratislavaSlovakia
  2. 2.Lehrstuhl für Theoretische ChemieRuhr–Universität BochumBochumGermany
  3. 3.Department of PhysicsKing’s College LondonLondonUnited Kingdom
  4. 4.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations