Numerical Investigations of Model Scramjet Combustors

  • Markus Kindler
  • Thomas Blacha
  • Markus Lempke
  • Peter Gerlinger
  • Manfred Aigner


In the present paper different types of scramjet (supersonic combustion ramjet) combustors are investigated. Thereby the main difference between the combustors is the way of injecting the fuel into the combustion chamber. The first investigated concept of fuel injection is the injection by strut injectors. Here the injection of fuel is realized by a lobed strut that is located in the middle of the combustion chamber. The second concept for fuel supply is the wall injection of hydrogen. Here the fuel is injected by several holes in the wall of the combustor. Both concepts of fuel injection have different advantages and disadvantages which are explained in detail. Although different performance parameters for both scramjet combustors are introduced this paper will not compare the different techniques among each other. Because of the high Reynolds numbers in scramjet combustors, the need to resolve the boundary layers and the necessity of detailed chemistry, the simulation of scramjets is extremely CPU time demanding.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belanger, J., Hornung, H.G., Transverse Jet Mixing and Combustion Experiments in Hypervelocity Flows, Journal of Propulsion and Power, 12, pp. 186-192, 1996. CrossRefGoogle Scholar
  2. 2.
    Riggins, D.W., McClinton, C.R., Rogers, R.C., Bittner, R.D.: Investigation of Scramjet Injection Strategies for High Mach Number Flows, Journal of Propulsion and Power, 11, pp. 409-418, 1995. CrossRefGoogle Scholar
  3. 3.
    Baurle, R.A., Fuller, R.P., White, J.A., Chen, T.H., Gruber, M.R., Nejad, A.S: An Investigation of Advanced Fuel Injection Schemes for Scramjet Combustion, AIAA paper 98-0937, 1998. Google Scholar
  4. 4.
    Glawe, D.D., Samimiy, M., Nejad, A.S., Cheng, T.H.: Effects of Nozzle Geometry on Parallel Injection from Base of an Extended Strut into a Supersonic Flow, AIAA paper 95-0522, 1995. Google Scholar
  5. 5.
    Strickland, J.H., Selerland, T., Karagozian, A.R: Numerical Simulation of a Lobed Fuel Injector, Physics of Fluids, 10, pp. 2950-2964, 1998. CrossRefGoogle Scholar
  6. 6.
    Charyulu, B.V.N., Kurian, J., Venugopalan, P., Sriamulu, V.: Experimental Study on Mixing Enhancement in Two Dimensional Supersonic, Experiments in Fluids, 24, pp. 340-346, 1998. CrossRefGoogle Scholar
  7. 7.
    Sunami, T., Wendt, M., Nishioka, M.: Supersonic Mixing and Combustion Control Using Streamwise Vorticity, AIAA paper 98-3271, 1998. Google Scholar
  8. 8.
    Coakley, T.J., Huang, P.G., Turbulence Modeling for High Speed Flows, AIAA paper 92-0436, 1992. Google Scholar
  9. 9.
    Gerlinger, P., Möbus, H., Brüggemann, D.: An Implicit Numerical Scheme for Turbulent Combustion Using an Assumed PDF Approach, AIAA paper 99-3775, 1999. Google Scholar
  10. 10.
    Girimaji, S.S.: A Simple Recipe for Modeling Reacting-Rates in Flows with Turbulent Combustions, AIAA paper 91-1792, 1991. Google Scholar
  11. 11.
    Jameson, A., Yoon, S.: Lower-Upper Implicit Scheme with Multiple Grids for the Euler Equations, AIAA Journal, 25, pp. 929-937, 1987. CrossRefGoogle Scholar
  12. 12.
    Shuen, J.S.: Upwind Differencing and LU Factorization for Chemical Non-Equilibrium Navier-Stokes Equations, Journal of Computational Physics, 99, pp. 233-250, 1992. zbMATHCrossRefGoogle Scholar
  13. 13.
    Gerlinger, P., Brüggemann, D.: An Implicit Multigrid Scheme for the Compressible Navier-Stokes Equations with Low-Reynolds-Number Turbulence Closure, Journal of Fluids Engineering, 120, pp. 257-262, 1998. CrossRefGoogle Scholar
  14. 14.
    Gerlinger, P., Möbus, H., Brüggemann, D.: An Implicit Multigrid Method for Turbulent Combustion, Journal of Computational Physics, 167, pp. 247-276, 2001. zbMATHCrossRefGoogle Scholar
  15. 15.
    Gerlinger, P., Brüggemann, D.: Numerical Investigation of Hydrogen Strut Injections into Supersonic Air Flows, Journal of Propulsion and Power, 16, pp. 22-28, 2000. CrossRefGoogle Scholar
  16. 16.
    Gerlinger, P.: Investigations of an Assumed PDF Approach for Finite-Rate-Chemistry, Combustion Science and Technology, 175, pp. 841-872, 2003. CrossRefGoogle Scholar
  17. 17.
    Stoll, P., Gerlinger, P., Brüggemann, D.: Domain Decomposition for an Impicit LU-SGS Scheme Using Overlapping Grids, AIAA-paper 97-1896, 1997. Google Scholar
  18. 18.
    Stoll, P., Gerlinger, P., Brüggemann, D.: Implicit Preconditioning Method for Turbulent Reacting Flows, Proceedings of the 4th ECCOMAS Conference, 1, pp. 205-212, John Wiley & Sons, 1998. Google Scholar
  19. 19.
    Gerlinger, P., Stoll, P., Kindler, M., Schneider, F. and Aigner, M.: Numerical Investigation of Mixing and Combustion Enhancement in Supersonic Combustors by Strut Induced Ttreamwise Vorticity, Aerospace Science and Technology, 12, pp. 159-168, 2008. CrossRefGoogle Scholar
  20. 20.
    Kindler, M., Gerlinger, P. and Aigner, M.: Numerical Investigations of Mixing Enhancement by Lobed Strut Injectors in Turbulent Reactive Supersonic Flows, ISABE-2007-1314, 2007. Google Scholar
  21. 21.
    Gardner, A.: HyShot Scramjet Testing in the HEG,FB 2007-14,University of Queensland, Australia, 2007. Google Scholar
  22. 22.
    Kindler, M., Gerlinger, P. and Aigner, M.: Assumed PDF Modeling of Turbulence Chemistry Interaction in Scramjet Combustors, High Performance Computing in Science and Engineering ’07, pp. 203-213, 2008. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Markus Kindler
    • 1
  • Thomas Blacha
    • 1
  • Markus Lempke
    • 1
  • Peter Gerlinger
    • 1
  • Manfred Aigner
    • 1
  1. 1.Institut für Verbrennungstechnik der Luft- und RaumfahrtUniversität StuttgartStuttgartGermany

Personalised recommendations