An Efficient Algorithm for the Inclusion Problem of a Subclass of DPDAs

  • Ryo Yoshinaka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5196)


This paper presents an efficient algorithm solving the inclusion problem of a new subclass of context-free languages. The languages are accepted by the special kind of real-time deterministic pushdown automata, called strongly forward-deterministic pushdown automata, that go to the same state and push the same sequence of stack symbols whenever transition is allowed on the same input symbol. Our algorithm can be applied to efficient identification in the limit of that class from positive data.


Polynomial Time Positive Data Inclusion Problem Node Label Input Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asveld, P.R.J., Nijholt, A.: The inclusion problem for some subclasses of context-free languages. Theoretical Computer Science 230(1-2), 247–256 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Friedman, E.P.: The inclusion problem for simple languages. Theoretical Computer Science 1(4), 297–316 (1976)zbMATHCrossRefGoogle Scholar
  3. 3.
    Friedman, E.P., Greibach, S.A.: Superdeterministic dpdas: The method for accepting does affect decision problems. Journal of Computer and System Science 19(1), 79–117 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Greibach, S.A., Friedman, E.P.: Superdeterministic PDAs: A subcase with a decidable inclusion problem. Journal of the Association for Computing Machinery 27(4), 675–700 (1980)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Linna, M.: Two decidability results for deterministic pushdown automata. Journal of Computer and System Science 18, 92–107 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Tozawa, A., Minamide, Y.: Complexity results on balanced context-free languages. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 346–360. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Wakatsuki, M., Teraguchi, K., Tomita, E.: Polynomial time identification of strict deterministic restricted one-counter automata in some class from positive data. In: Paliouras, G., Sakakibara, Y. (eds.) ICGI 2004. LNCS (LNAI), vol. 3264, pp. 260–272. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Wakatsuki, M., Tomita, E.: A fast algorithm for checking the inclusion for very simple deterministic pushdown automata. IEICE transactions on information and systems  E76-D(10), 1224–1233 (1993)Google Scholar
  9. 9.
    Yokomori, T.: Polynomial-time identification of very simple grammars from positive data. Theoretical Computer Science 298, 179–206 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Yokomori, T.: Polynomial-time identification of very simple grammars from positive data. Theoretical Computer Science 377(1–3), 282–283 (2003); Theoret. Comput. Sci. 298, 179–206 (2003) MathSciNetGoogle Scholar
  11. 11.
    Yoshinaka, R.: Polynomial-time identification of an extension of very simple grammars from positive data. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 45–58. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ryo Yoshinaka
    • 1
  1. 1.Hokkaido University 

Personalised recommendations