Synchronizing Automata and the Černý Conjecture

  • Mikhail V. Volkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5196)


We survey several results and open problems related to synchronizing automata. In particular, we discuss some recent advances towards a solution of the Černý conjecture.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almeida, J., Margolis, S., Steinberg, B., Volkov, M.V.: Representation theory of finite semigroups, semigroup radicals and formal language theory. Trans. Amer. Math. Soc (to appear, 2008),
  2. Ananichev, D.S.: The mortality threshold for partially monotonic automata. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 112–121. Springer, Heidelberg (2005)Google Scholar
  3. Ananichev, D.S., Volkov, M.V.: Some results on Černý type problems for transformation semigroups. In: Araujo, I., Branco, M., Fernandes, V.H., Gomes, G.M.S. (eds.) Semigroups and Languages, pp. 23–42. World Scientific, Singapore (2004)CrossRefGoogle Scholar
  4. Ananichev, D.S., Volkov, M.V., Zaks, Y.I.: Synchronizing automata with a letter of deficiency 2. Theoret. Comput. Sci. 376(1-2), 30–41 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall, London (1956), MATHGoogle Scholar
  6. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414(1), 430–434 (2001)CrossRefGoogle Scholar
  7. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule provides a computing machine with both data and fuel. Proc. National Acad. Sci. USA 100, 2191–2196 (2003)CrossRefGoogle Scholar
  8. Booth, T.L.: Sequential Machines and Automata Theory. J. Wiley & Sons, New York (1967)MATHGoogle Scholar
  9. Boppana, V., Rajan, S.P., Takayama, K., Fujita, M.: Model checking based on sequential ATPG. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 418–430. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami. Matematicko-fyzikalny Časopis Slovensk. Akad. Vied 14(3), 208–216 (1964) (in Slovak) MATHGoogle Scholar
  11. Černý, J., Pirická, A., Rosenauerová, B.: On directable automata. Kybernetika 7(4), 289–298 (1971)MATHMathSciNetGoogle Scholar
  12. Chen, Y.-B., Ierardi, D.J.: The complexity of oblivious plans for orienting and distinguishing polygonal parts. Algorithmica 14, 367–397 (1995)MATHCrossRefMathSciNetGoogle Scholar
  13. Cho, H., Jeong, S.-W., Somenzi, F., Pixley, C.: Synchronizing sequences and symbolic traversal techniques in test generation. J. Electronic Testing 4, 19–31 (1993)CrossRefGoogle Scholar
  14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)MATHGoogle Scholar
  15. Dubuc, L.: Sur le automates circulaires et la conjecture de Černý. RAIRO Inform. Theor. Appl. 32, 21–34 (1998) (in French) MathSciNetGoogle Scholar
  16. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–510 (1990)MATHCrossRefMathSciNetGoogle Scholar
  17. Fischler, M.A., Tannenbaum, M.: Synchronizing and representation problems for sequential machines with masked outputs. In: Proc. 11th Annual Symp. Foundations Comput. Sci., pp. 97–103. IEEE, Los Alamitos (1970)Google Scholar
  18. Frankl, P.: An extremal problem for two families of sets. Eur. J. Comb. 3, 125–127 (1982)MATHMathSciNetGoogle Scholar
  19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)Google Scholar
  20. Gill, A.: State-identification experiments in finite automata. Information and Control 4(2-3), 132–154 (1961)MATHCrossRefMathSciNetGoogle Scholar
  21. Ginsburg, S.: On the length of the smallest uniform experiment which distinguishes the terminal states of a machine. J. Assoc. Comput. Mach. 5, 266–280 (1958)MATHMathSciNetGoogle Scholar
  22. Goldberg, K.: Orienting polygonal parts without sensors. Algorithmica 10, 201–225 (1993)MATHCrossRefMathSciNetGoogle Scholar
  23. Goralčik, P., Koubek, V.: Rank problems for composite transformations. Int. J. Algebra and Computation 5, 309–316 (1995)MATHCrossRefGoogle Scholar
  24. Hennie, F.C.: Fault detecting experiments for sequential circuits. In: Proc. 5th Annual Symp. Switching Circuit Theory and Logical Design, pp. 95–110. IEEE, Los Alamitos (1964)CrossRefGoogle Scholar
  25. Hennie, F.C.: Finite-state Models for Logical Machines. J. Wiley & Sons, New York (1968)MATHGoogle Scholar
  26. Higgins, P.M.: The range order of a product of i transformations from a finite full transformation semigroup. Semigroup Forum 37, 31–36 (1988)MATHCrossRefMathSciNetGoogle Scholar
  27. Kari, J.: A counter example to a conjecture concerning synchronizing words in finite automata. EATCS Bull. 73, 146 (2001)MATHMathSciNetGoogle Scholar
  28. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theoret. Comput. Sci. 295, 223–232 (2003)MATHCrossRefMathSciNetGoogle Scholar
  29. Klyachko, A.A., Rystsov, I.K., Spivak, M.A.: An extremal combinatorial problem associated with the bound of the length of a synchronizing word in an automaton. Kibernetika 25(2), 16–20 (1987) (in Russian); English translation: Cybernetics and Systems Analysis 23(2), 165–171 MathSciNetGoogle Scholar
  30. Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill, New York (1970)MATHGoogle Scholar
  31. Kohavi, Z., Winograd, J.: Bounds on the length of synchronizing sequences and the order of information losslessness. In: Kohavi, Z., Paz, A. (eds.) Theory of Machines and Computations, pp. 197–206. Academic Press, New York (1971)Google Scholar
  32. Kohavi, Z., Winograd, J.: Establishing certain bounds concerning finite automata. J. Comput. Syst. Sci. 7(3), 288–299 (1973)MATHMathSciNetGoogle Scholar
  33. Laemmel, A.E., Rudner, B.: Study of the application of coding theory, Report PIBEP-69-034, Polytechnic Inst. Brooklyn, Dept. Electrophysics, Farmingdale (1969)Google Scholar
  34. Mateescu, A., Salomaa, A.: Many-valued truth functions, Černý’s conjecture and road coloring. EATCS Bull. 68, 134–150 (1999)MATHMathSciNetGoogle Scholar
  35. McNaughton, R., Papert, S.A.: Counter-free Automata. MIT Press, Cambridge (1971)MATHGoogle Scholar
  36. Moore, E.F.: Gedanken-experiments on sequential machines. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, Annals of Mathematics Studies, vol. 34, pp. 129–153. Princeton University Press, Princeton (1956)Google Scholar
  37. Natarajan, B.K.: An algorithmic approach to the automated design of parts orienters. In: Proc. 27th Annual Symp. Foundations Comput. Sci., pp. 132–142. IEEE, Los Alamitos (1986)Google Scholar
  38. Natarajan, B.K.: Some paradigms for the automated design of parts feeders. Internat. J. Robotics Research 8(6), 89–109 (1989)Google Scholar
  39. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  40. Pin, J.-E.: On two combinatorial problems arising from automata theory. Ann. Discrete Math. 17, 535–548 (1983)MATHGoogle Scholar
  41. Pixley, C., Jeong, S.-W., Hachtel, G.D.: Exact calculation of synchronization sequences based on binary decision diagrams. In: Proc. 29th Design Automation Conf., pp. 620–623. IEEE, Los Alamitos (1992)CrossRefGoogle Scholar
  42. Rho, J.-K., Somenzi, F., Pixley, C.: Minimum length synchronizing sequences of finite state machine. In: Proc. 30th Design Automation Conf., pp. 463–468. ACM, New York (1993)Google Scholar
  43. Salomaa, A.: Composition sequences for functions over a finite domain. Theoret. Comput. Sci. 292, 263–281 (2003)MATHCrossRefMathSciNetGoogle Scholar
  44. Samotij, W.: A note on the complexity of the problem of finding shortest synchronizing words. In: Proc. AutoMathA 2007, Automata: from Mathematics to Applications, Univ. Palermo (CD) (2007)Google Scholar
  45. Sandberg, S.: Homing and synchronizing sequences. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)Google Scholar
  46. Starke, P.H.: Eine Bemerkung über homogene Experimente. Elektronische Informationverarbeitung und Kybernetik 2, 257–259 (1966) (in German)MATHGoogle Scholar
  47. Starke, P. H.: Abstrakte Automaten, Deutscher Verlag der Wissenschaften, Berlin (1969) (in German); English translation: Abstract Automata, North-Holland, Amsterdam, American. Elsevier, New York (1972)Google Scholar
  48. Trahtman, A.: An efficient algorithm finds noticeable trends and examples concerning the Černý conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 789–800. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  49. Trahtman, A.: The Černý conjecture for aperiodic automata. Discrete Math. Theoret. Comp. Sci. 9(2), 3–10 (2007)MATHMathSciNetGoogle Scholar
  50. Trahtman, A.: The Road Coloring Problem. Israel J. Math. (to appear, 2008),
  51. Volkov, M.V.: Synchronizing automata preserving a chain of partial orders. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 27–37. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  52. Yang, S.: Logic Synthesis and Optimization Benchmarks User Guide Version 3.0, Microelectronics Center of North Carolina, Research Triangle Park, NC (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mikhail V. Volkov
    • 1
  1. 1.Department of Mathematics and MechanicsUral State UniversityEkaterinburgRussia

Personalised recommendations