Advertisement

How Many Figure Sets Are Codes?

  • Małgorzata Moczurad
  • Włodzimierz Moczurad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5196)

Abstract

Defect theorem, which provides a kind of dimension property for words, does not hold for two-dimensional figures (labelled polyominoes), except for some small sets. We thus turn to the analysis of asymptotic density of figure codes. Interestingly, it can often be proved to be 1, even in those cases where the defect theorem fails. Hence it reveals another weak dimension property which does hold for figures, i.e., non-codes are rare.

We show that the asymptotic densities of codes among the following sets are all equal to 1: (ordinary) words, square figures and small sets of dominoes, where small refers to cardinality ≤ 3. The latter is a borderline case for the defect theorem and additionally exhibits interesting properties at different alphabet sizes.

Keywords

Polyominoes codes asymptotic density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beauquier, D., Nivat, M.: A codicity undecidable problem in the plane. Theoret. Comp. Sci. 303, 417–430 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berstel, J., Perrin, D.: Theory of Codes. Academic Press, London (1985)zbMATHGoogle Scholar
  3. 3.
    Harju, T., Karhumäki, J.: Many aspects of the defect effect. Theoret. Comp. Sci. 324, 35–54 (2004)zbMATHCrossRefGoogle Scholar
  4. 4.
    Karhumäki, J., Mantaci, S.: Defect Theorems for Trees. Fundam. Inform. 38, 119–133 (1999)zbMATHGoogle Scholar
  5. 5.
    Karhumäki, J., Maňuch, J.: Multiple factorizations of words and defect effect. Theoret. Comp. Sci. 273, 81–97 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Karhumäki, J., Maňuch, J., Plandowski, W.: A defect theorem for bi-infinite words. Theoret. Comp. Sci. 292, 237–243 (2003)zbMATHCrossRefGoogle Scholar
  7. 7.
    Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  8. 8.
    Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  9. 9.
    Mantaci, S., Restivo, A.: Codes and equations on trees. Theoret. Comp. Sci. 255, 483–509 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Maňuch, J.: Defect Effect of Bi-infinite Words in the Two-element Case. Discrete Mathematics & Theoretical Computer Science 4, 273–290 (2001)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Moczurad, M., Moczurad, W.: Asymptotic density of brick and word codes. Ars Combinatoria 83, 169–177 (2007)MathSciNetGoogle Scholar
  12. 12.
    Moczurad, M., Tyszkiewicz, J., Zaionc, M.: Statistical properties of simple types. Math. Struct. in Comp. Science 10, 575–594 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Moczurad, W.: Defect theorem in the plane. Theoret. Informatics Appl. 41, 403–409 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Wilf, H.: Generatingfunctionology. Academic Press, London (1994)zbMATHGoogle Scholar
  15. 15.
    Yeats, K.: Asymptotic Density in Combined Number Systems. New York J. Math. 8, 63–83 (2002)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Małgorzata Moczurad
    • 1
  • Włodzimierz Moczurad
    • 1
  1. 1.Institute of Computer ScienceJagiellonian UniversityKrakówPoland

Personalised recommendations