Choquet Stieltjes Integral, Losonczi’s Means and OWA Operators

  • Vicenç Torra
  • Yasuo Narukawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5285)


Neat OWA operators have been defined as a generalization of the OWA operators. In this paper we study these operators establishing some relationships with some other operators. In particular, we link them with the Losonczi’s mean.


Aggregation operators Losonczi’s mean OWA operators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bajraktarević, M.: Sur une equation fonctionnelle aux valeurs moyennes. Glanik Mat.-Fiz. i Astr., Zagreb 13, 243–248 (1958)zbMATHGoogle Scholar
  2. 2.
    Bajraktarević, M.: Sur une genéralisation des moyennes quasilineaire. Publ. Inst. Math. Beograd. 3(17), 69–76 (1963)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bullen, P.S., Mitrinović, D.S., Vasić, P.M.: Means and their Inequalities. D. Reidel Publishing Company (1988)Google Scholar
  4. 4.
    Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation Operators. Physica-Verlag (2002)Google Scholar
  5. 5.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier, Grenoble 5, 131–295 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dellacherie, C.: Quelques commentaires sur les prolongements de capacités. In: Séminaire de Probabilités 1969/1970, Strasbourg. Lecture Notes in Mathematics, vol. 191, pp. 77–81 (1971)Google Scholar
  7. 7.
    Fodor, J., Marichal, J.-L., Roubens, M.: Characterization of the ordered weighted averaging operators. IEEE Trans. on Fuzzy Systems 3(2), 236–240 (1995)CrossRefGoogle Scholar
  8. 8.
    Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy Measures and Integrals: Theory and Applications. Physica-Verlag (2000)Google Scholar
  9. 9.
    Losonczi, L.: Über eine neue Klasse von Mittelwerte. Acta Sci. Math (Acta Univ. Szeged) 32, 71–78 (1971)zbMATHGoogle Scholar
  10. 10.
    Miranda, P., Grabisch, M.: p-symmetric fuzzy measures. In: Proc. of the IPMU 2002 Conference, Annecy, France, pp. 545–552 (2002)Google Scholar
  11. 11.
    Murofushi, T., Sugeno, M.: An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets and Systems 29, 201–227 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Narukawa, Y., Murofushi, T.: Choquet Stieltjes integral as a tool for decision modeling. Int. J. of Intel. Syst. 23, 115–127 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Narukawa, T.: Distances defined by Choquet integral. In: IEEE International Conference on Fuzzy Systems, London, CD-ROM [#1159] (2007)Google Scholar
  14. 14.
    Riesz, F., Nagy, B.: Functional analysis. Frederick Unger Publishing (1955)Google Scholar
  15. 15.
    Schmeidler, D.: Integral representation without additivity. Proceedings of the American Mathematical Society 97, 253–261 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sugeno, M., Narukawa, Y., Murofushi, T.: Choquet integral and fuzzy measures on locally compact space. Fuzzy Sets and Systems 99, 205–211 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sugeno, M.: Theory of fuzzy integrals and its applications, Doctoral Thesis, Tokyo Institute of Technology (1974)Google Scholar
  18. 18.
    Torra, V.: The weighted OWA operator. Int. J. of Intel. Syst. 12, 153–166 (1997)CrossRefzbMATHGoogle Scholar
  19. 19.
    Torra, V., Narukawa, Y.: Modeling decisions: information fusion and aggregation operators. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  20. 20.
    Torra, V., Narukawa, Y.: Modelització de decisions: fusió d’informació i operadors d’agregació. UAB Press (2007)Google Scholar
  21. 21.
    van der Waerden, B.L.: Mathematical statistics. Springer, Berlin (1969)CrossRefzbMATHGoogle Scholar
  22. 22.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. on Systems, Man and Cybernetics 18, 183–190 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Yager, R.R., Filev, D.P.: Parameterized and-like and or-like OWA operators. Int. J. of General Systems 22, 297–316 (1994)CrossRefGoogle Scholar
  24. 24.
    Yager, R.R.: Families of OWA operators. Fuzzy Sets and Systems 59, 125–148 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Vicenç Torra
    • 1
  • Yasuo Narukawa
    • 2
  1. 1.IIIA-CSIC, Institut d’Investigació en Intel·ligència ArtificialBellaterraSpain
  2. 2.Toho GakuenTokyoJapan

Personalised recommendations