Environmental Surveying and Surveillance

  • Joseph L. Awange
Part of the Environmental Science and Engineering book series (ESE)


In this section, we discuss the quantitative and qualitative data that could be collected using GNSS satellites, and in so doing, attempt to answer the question “what can GNSS satellites deliver that are of use to environmental monitoring?" The observed parameters necessary for environmental monitoring vary, depending upon the indicators being assessed. Some are physical variables such as changes in soil patterns, vegetation, rainfall, water levels, temperature, deforestation, solar and UV radiation. Others are chemical variables , e.g., pH, salinity, nutrients, metals, pesticides, while others are biological variables , e.g., species types, ecosystem health, and indicator species.


Very Long Baseline Interferometry Precise Point Position International Global Navigation Satellite System Service Integer Ambiguity Precise Point Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderssohn J, Wetzel H, Walter TR, Motagh M, Djamour Y, Kaufmann H (2008) Land subsidence pattern controlled by old alpine basement faults in the Kashmar Valley, northeast Iran: results from InSAR and levelling. Geophys J Int 174:287–294. doi: 10.1111/j.1365-246X.2008.03805.x Google Scholar
  2. Awange JL, Grafarend EW (2005) Solving algebraic computational problems in geodesy and geoinformatics. Springer, BerlinGoogle Scholar
  3. Awange JL, Grafarend EW, Palánczz B, Zaletnyik P (2010) Algebraic geodesy and geoinformatics. 2nd edn edn. Springer, BerlinCrossRefGoogle Scholar
  4. El-Rabbany A (2006) Introduction to GPS Global Positioning System,Artech House 2nd edn.Google Scholar
  5. Featherstone WE, Kirby JF, Kearsley AHW, Gilliland JR, Johnston GM, Steed J (2001) The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data. J Geodesy 75(5–6):313–330. doi: 10.1007/s001900100177 Google Scholar
  6. Gao Y (2006) Precise point positioning and its challenges. Inside GNSS November/December issue, pp. 16–18Google Scholar
  7. Geoscience Australia (2009) Australian Regional GPS Network. Accessed 16 May 2009
  8. Grafarend EW, Krum FW (2006) Map projections - Cartographic Information Systems. Springer, BerlinGoogle Scholar
  9. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paper. Accessed 06 Jun 2011
  10. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2011) Scientific value of real-time Global Positioning System data. Eos 92(15):125–126. doi: 10.1029/2011EO150001 Google Scholar
  11. Hofman-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS Global Navigation Satellite System: GPS, GLONASS; Galileo and more. Springer, WienGoogle Scholar
  12. IGS (2009) International GNSS Service. Accessed on 16 May 2009
  13. Leick A (2004) GPS satellite surveying. 3rd edn. John Wiley & Sons, New YorkGoogle Scholar
  14. Maryam D, Zoej V, Javad M, Iman E, Ali M, Sassan S (2009) InSAR monitoring of progressive land subsidence in Neyshabour, northeast Iran. Geophys J Int 186(1):382. doi: 10.1111/j.1365-246X.2009.04135.x Google Scholar
  15. Matsuzaka S (2006) GPS network experience in Japan and its usefulness. Geographical Survey Institute, Bangkok ThailandGoogle Scholar
  16. Motagh M, Djamour Y, Walter TR, Wetze H, Zschau J, Arabi S (2007) Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, levelling and GPS. Geophys J Int 168:518–526. doi: 10.1111/j.1365-246X.2006.03246.x Google Scholar
  17. Prasad R, Ruggieri M (2005) Applied satellite navigation using GPS, GALILEO and Augmentation Systems. Artech House, Boston/LondonGoogle Scholar
  18. Rieser D (2008) Comparison of GRACE-derived monthly Surface Mass Variations with Rainfall Data in Australia. MSc Thesis. Graz University of TechnologyGoogle Scholar
  19. Rizos C (2001) Alternatives to current GPS-RTK services and some implications for CORS infrastructure and operations. GPS Solution 11(3):151–158. doi: 10.1007/s10291-007-0056-x
  20. Sagiya T (2005) A decade of GEONET: 1994–2003 The continuous GPS observation in Japan and its impact on earthquake studies Earth Planets Space (56):xxix–xliGoogle Scholar
  21. SAPOS (2009) Satellitenpositionierungsdienst der deutschen Landesvermessung. Accessed 16 May 2009
  22. Schofield W, Breach M (2007) Engineering Surveying. 6th edn. Elsevier, AmsterdamGoogle Scholar
  23. Snay R, Soler T (2008) Continuously operating reference station (CORS): History, applications, and future enhancements. J Surv Eng 134(4):95–104. doi: 10.1061/(ASCE)0733-9453
  24. Stone W (2006) The evolution of the national geodetic survey’s continuously operating reference station network and online positioning user service. Accessed 16 May 2009
  25. US Army Corps of Engineers (2007) NAVSTAR Global Positioning System surveying Engineering and Design Manual, EM 1110-1-1003Google Scholar
  26. Wallace N (2007) CORS simulation for Australia. Curtin University of Technology. Final year project (unpublished)Google Scholar
  27. Westerhaus M, Welle W (2002) Environmental effects on tilt measurements at Merapi volcano. Bulletin d’Information des MarTes Terrestres 137:10917–10926Google Scholar
  28. Wolfgang D (2005) Funktion und Nutzung des SAPOS - Deutschland-Netzes, Flächenmanagement und Bodenordnung (FuB). Accessed on 16 May 2009

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joseph L. Awange
    • 1
    • 2
    • 3
    • 4
  1. 1.Maseno UniversityMasenoKenya
  2. 2.Curtin UniversityPerthAustralia
  3. 3.Karlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Kyoto UniversityKyotoJapan

Personalised recommendations