Animals and Vegetation Protectionand Conservation

  • Joseph L. Awange
Part of the Environmental Science and Engineering book series (ESE)


This chapter presents ways in which the emerging GNSS methods could be useful in supporting management and conservation efforts of animals and vegetation . Ways in which animals and vegetation impact on the environment, and vice versa, i.e., the ways in which the environment impact through human-induced anthropogenic activities on the animals and vegetation are considered. Specific emphasis on how GNSS could support these efforts through monitoring, thereby enabling remedial measures to be undertaken are presented.


Normalize Difference Vegetation Index Synthetic Aperture Radar Landsat Thematic Mapper Very High Frequency GNSS Receiver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdalati W, Zwally HJ, Bindschadler B, Csatho B, Farrell SL, Fricker HA, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C (2010) The ICESat-2 Laser Altimetry Mission. Proc IEEE 98(5):735–751. doi: 10.1109/JPROC.2009.2034765 Google Scholar
  2. Ausseil AE, Dymond JR, Shephard JD (2007) Rapid mapping and prioritisation of wetland sites in the Manawatu-Wanganui region, New Zealand. Environ Manag 39:316–325. doi: 10.1007/s00267-005-0223-1 Google Scholar
  3. Awange JL, Ong’ang’a O (2006) Lake Victoria-Ecology, Resource of the Lake Basines and Environment. Springer, BerlinGoogle Scholar
  4. Awange JL, Aseto O, Ong’ang’a O (2004) A case study on the impact of Giraffes in Ruma National Park in Kenya. J Wildl Rehabil 27:16–21Google Scholar
  5. Barbari M, Conti L, Koostra BK, Masi G, Sorbetti GF, Workman SR (2006) The Use of Global Positioning and Geographical Information Systems in the management of extensive cattle grazing. Biosystems Eng 95(2):271–280. doi: 10.1016/j.biosystemseng.2006.06.012 Google Scholar
  6. Berger J (2004) The last mile: how to sustain long-distance migration in mammals. Conserv Biol 18:320–331. doi: 10.1111/j.1523-1739.2004.00548.x Google Scholar
  7. Brondizio ES, Moran EF, Mausel P, Wu Y (1994) Land use change in the Amazon estuary: Patterns of caboclo settlement and landscape management. Hum Ecol 22(3):249–278CrossRefGoogle Scholar
  8. Brooks RP, Wardrop DH, Cole CA (2006) Inventorying and monitoring wetland condition and restoration on a watershed basin with examples from Spring Creek Watershed, Pennsylvania, USA. Environ Manag 38(4):673–687. doi: 10.1007/s00267-004-0389-y Google Scholar
  9. Cagnacci F, Boitani L, Powell PA, Boyce MS (eds) (2010) Challenges and opportunities of using GPS-based location data in animal ecology. Philos Trans Royal Soc B (365):2155. doi: 10.1098/rstb.2010.0098
  10. Chester CC (2006) Landscape vision and the Yellowstone to Yukon Conservation Initiative. In: Chester CC (eds) Conservation across borders: biodiversity in an interdependent world. Island Press, Washington DC, pp 134–157Google Scholar
  11. Chopra R, Verma VK, Sharma PK (2001) Mapping, monitoring and conservation of Harike wetland ecosystem, Punjab India through remote sensing. Int J Remote Sens 22:89–98. doi: 10.1080/014311601750038866 Google Scholar
  12. Craighead FC (1982) Track of the grizzly. Random House, New YorkGoogle Scholar
  13. Craighead JJ, Sumner JS, Mitchell JA (1995) The grizzly bears of Yellowstone: their ecology in the Yellowstone ecosystem. Island Press, New YorkGoogle Scholar
  14. Emerton L, Kekulandala LDCB (2003) Assessment of the economic value of Muthurajawela wetland. Occasional Papers of IUCN Sri Lanka, no. 4, January 2003Google Scholar
  15. Environment Canada (2008) Scientific Review for the Identification of Critical Habitat for Woodland Caribou (Rangifer tarandus caribou), Boreal Population, in Canada. August 2008. Ottawa: Environment Canada. 72 pp. plus 180 pp Appendices.Google Scholar
  16. Fuller MR, Millspaugh JJ, Church KE, Kenward RE (2005) Wildlife radio telemetry. In: Braun CE (eds) Techniques for wildlife investigation and management. The Wildlife Society, Bethesda, pp 377–417Google Scholar
  17. Han M, Sun Y, Xu S (2007) Characteristics and driving factors of marsh changes in Zhalong wetland of China. Environ Monit Assess 127:363–381. doi: 10.1007/s10661-006-9286-6
  18. Harding DJ, Carabajal CC (2005) ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophys Res Lett 32:L21S10. doi: 10.1029/2005GL023471
  19. Hebblewhite M (2009) Linking wildlife populations with ecosystem change: State-of-the-art satellite ecology for national-park science. ParkScience 26(1). Accessed 25 Sept 2011
  20. Hebblewhite M, Haydon DT (2010) Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philos Trans Royal Soc B 365:2303–2312. doi: 10.1098/rstb.2010.0087 Google Scholar
  21. Holopainen M, Leino O, Kämäri H, Talvitie M (2006) Drought damage in the park forests of the city of Helsinki. Urban For Urban Green 4:75–83. doi: 10.1016/j.ufug.2005.11.002
  22. James LF, Young JA, Sanders K (2003) A New approach to monitoring rangelands. Arid Land Res Manag 17:319–328. doi: 10.1080/15324980390225467 Google Scholar
  23. Jensen JR, Christensen EJ, Sharitz R (1984) Nontidal wetland mapping in South Carolina using airborne multi-spectral scanner data. Remote Sens Environ 16:1–12CrossRefGoogle Scholar
  24. Johnson R, Wichern D (2007) Applied multivariate statistical analysis. 6th edn edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  25. Jonson RM, Barson MM (1993) Remote sensing of Australian wetlands: An evaluation of Landsat TM for inventory and classification. Australian J Marine Fresh Water Res 44:235–252CrossRefGoogle Scholar
  26. Kasischke ES, Bourgeau-Chavez LL (1997) Monitoring south Florida wetlands using ERS-1 SAR imagery. Photogrammetric Eng Remote Sens 63:281–291Google Scholar
  27. Munyati C (2000) Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image data set. Int J Remote Sens 21(9):1787–1806. doi: 10.1080/014311600209742 Google Scholar
  28. Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetlands Ecol Manag 10(5):381–402. doi: 10.1023/A:1020908432489 Google Scholar
  29. Raven Environmental Services (2008) Mapping and GIS/GPS Technology Services. Accessed 6 March 2008
  30. Sirait M, Prasodjo S, Podger N, Flavelle A, Fox J (1994) Mapping customary land in east Kalimantan, Indonesia: A tool for forest management. Ambio 23(7):411–417Google Scholar
  31. Steede-Terry K (2000) Integrating GIS and the Global Positioning System. ESRI Press, CaliforniaGoogle Scholar
  32. Tomkiewicz SM, Fuller MR, Kie JG, Bates KK (2010) Global positioning system and associated technologies in animal behaviour and ecological research. Philos Trans Royal Soc B 365:2163–2176. doi: 10.1098/rstb. 2010.0090 Google Scholar
  33. Townsend PA, Walsh SJ (1998) Modelling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology 21(3-4):295–312. doi: 10.1016/S0169-555X(97)00069-X
  34. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring Vegetation. Remote Sens Environ 8(2):127–150. doi: 10.1016/0034-4257(79)90013-0
  35. Urbano F, Cagnacci F, Clement C, Dettki H, Cameron A, Neteler M (2010) Wildlife tracking data management: a new vision. Philos Trans Royal Soc B 365:2177–2185. doi: 10.1098/rstb.2010.0081 Google Scholar
  36. Welch R, Remillard M, Doran RF (1995) GIS database development for South Florida’s National Parks and Preserves. Photogrammetric Eng Remote Sens 61:1371–1381Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joseph L. Awange
    • 1
    • 2
    • 3
    • 4
  1. 1.Maseno UniversityMasenoKenya
  2. 2.Curtin UniversityPerthAustralia
  3. 3.Karlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Kyoto UniversityKyotoJapan

Personalised recommendations