Advertisement

Disaster Management

  • Joseph L. Awange
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Natural disasters, whether of meteorological origin such as cyclones , floods , tornadoes and droughts or of having geological nature such as earthquakes and volcanoes , are well known for their devastating impacts on human life, economy and environment, and are also formidable physical constraints in our overall efforts to develop and utilize the natural resources on a sustainable basis. Indeed, disasters have been known to hit hard as seen from the floods of 2010–2011 in Pakistan and Australia, the sludge flow in Hungary in 2010, and the landslide in Brazil in 2011, events which had environmental catastrophe. Disaster trends reveal that the most vulnerable and hardest hit are normally the poorest people, most of who live in developing countries. With tropical climate and unstable land forms, coupled with high population density, poverty, illiteracy and lack of infrastructure development, developing countries are more vulnerable to suffer from the damaging potential of such disasters. For example, the year 2004 was witness to one of the greatest tragedies of humankind, the great tsunami that wiped out civilization in many parts of south-east Asia. Thousands were rendered homeless, and many lost their loved ones.

Keywords

Normalize Difference Vegetation Index Land Subsidence Tide Gauge Flash Flood Terrestrial Water Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adger WN, Huq S, Brown K, Conway D, Hulme M (2003) Adaptation to climate change in the developing world. Prog Dev Stud 3:179–195. doi: 10.1191/1464993403ps060oa CrossRefGoogle Scholar
  2. Ailamaki A, Faloutsos C, Fischbeck P, Small M, VanBriesen J (2003) An environmental sensor network to determine drinking water quality and security. SIGMOD Rec 32(4):47–52. doi: 10.1145/959060.959069 CrossRefGoogle Scholar
  3. Antonov JI, Levitus S, Boyer TP (2002) Steric sea level variations during 1957–1994: importance of salinity. J Geophys Res (Oceans) 107(C12):8013. doi: 10.1029/2001JC000964 CrossRefGoogle Scholar
  4. Awange JL, Fukuda Y (2003) On possible use of GPS-LEO satellite for ood forecasting. The international civil engineering conference on sustainable development in the 21st century “The civil engineer in development", Nairobi, Kenya, 12–16 August 2003Google Scholar
  5. Awange JL, Aluoch J, Ogallo L, Omulo M, Omondi P (2007) Frequency and severity of drought in the lake victoria region (Kenya) and its effects on food security. Clim Res 33:135–142. doi: 10.3354/cr033135 CrossRefGoogle Scholar
  6. Awange JL, Ogallo L, Kwang-Ho B, Were P, Omondi P, Omute P, Omulo M (2008) Falling lake victoria water levels: is climate a contribution factor?. J Clim Change 89:287–297. doi: 10.1007/s10584-008-9409-x Google Scholar
  7. Baker HC, Dodson AH, Penna NT, Higgins M, Offler D (2001) Ground-based GPS water vapour estimation: potential for meteorological forecasting. J Atmos Sol Terr Phys 63(12):1305–1314. doi: 10.1016/S1364-6826(00)00249-2 CrossRefGoogle Scholar
  8. Bamber JL, Riva REM, Vermeersen BLA, LeBrocq AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324:901CrossRefGoogle Scholar
  9. Barrett CB (2002) Food security and food assistance programs. In: Gardner B, Rausser G (eds) Handbook of agricultural economics, vol. 2. Elsevier Science, Amsterdam, pp 2103–2190Google Scholar
  10. Becker M, Llowel W, Cazenave A, Güntner A, Crétaux J-F (2010) Recent hydrological behaviour of the East African great lakes region inferred from GRACE, satellite altimetry and rainfall observations. Comptes Rendus Geosci 342(3):223–233. doi: 10.1016/j.crte.2009.12.010 CrossRefGoogle Scholar
  11. Bill R (2011) Precise positioning in ad hoc geosensor newtorks. http://www.ikg.unihannove.de/geosensor/Lecture/Wednesday/Session1/sess1bill.pdf. Accessed 22 Jan 2011
  12. Bonner MR, Han D, Nie J, Rogerson P, Vena JE, Freudenheim Jo L (2003) Positional accuracy of geocoded addresses in epidemiologic research. Epidemiology 14:408–412. doi: 10.1097/01.EDE.0000073121.63254.c5 Google Scholar
  13. Born GH, Parke ME, Axelrad P, Gold KL, Johnson J, Key KW, Kubitschek DG, Christensen EJ (1994) Calibration of the TOPEX altimeter using a GPS buoy. J Geophys Res 99:(C12) 24,517–24,526Google Scholar
  14. Brenner C (2011) Geo sensor networks-when and how? http://dgk.auf.unirostoc.de/uploads/media/22-Brenner.pdf. Accessed 22 Jan 2011
  15. Chen JL, Wilson CR, Tapley BD, Yang ZL, Niu GY (2009) 2005 drought event in the Amazon river basin as measured by GRACE and estimated by climate models. J Geophys Res 114:B05404. doi: 10.1029/2008JB006056 CrossRefGoogle Scholar
  16. Church JA, Gregory JM, Huybrechts P, Kuhn M, Lambeck K, Nhuan MT, Qin D, Woodworth PL (2001) Changes in sea level. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis: contribution of working group I to the third assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, New York, pp 639–694Google Scholar
  17. Crétaux J-F, Leblanc M, Tweed S, Calmant S and Ramillien G (2007) Combining of radar and laser altimetry, MODIS remote sensing and GPS for the monitoring of ood events: application to the ood plain of the diamantina river. Geophys Res Abstr 9:07496. SRef-ID: 1607-7962/gra/EGU2007-A-07496.Google Scholar
  18. Crétaux J-F, Jelinski W, Calmant S, Kouraev A, Vuglinski V, Bergé-Nguyen M, Gennero M.-C, Nino F, Abarca Del Rio R, Cazenave A, Maisongrande P (2011) SOLS: a lake database to monitor in the near real-time water level and storage variations from remote sensing data. Adv Space Res 47: 1497–1507. doi: 10.1016/j.asr.2011.01.004
  19. Dalton R (2007) GPS could offer better fault line mapping. Nat News. doi: 10.1038/news070521-9. http://www.nature.com/news/2007/070521/full/news070521-9.html. Accessed 25 Sept 2011
  20. Dickey JO, Bentley CR, Bilham R, Carton JA, Eanes RJ, Herring TA, Kaula WM, Lagerloef GSE, Rojstaczer S, Smith WHF, Van Den Dool HM, Wahr JM, Zuber MT (1996) Satellite gravity and the geosphere. National Research Council Report, National Academic Press, Washington, DC, p 112Google Scholar
  21. Drought Monitoring Centre Nairobi (DMCN) (2002) Factoring of weather and climate information and products into disaster management policy. A contribution to strategies for disaster reduction in Kenya. UNDP, Government of Kenya, and WMO, NairobiGoogle Scholar
  22. Garcia-Garcia D, Ummenhofer CC, Zlotnicki V (2011) Australian water mass variations from GRACE data linked to Indo-Pacific climate variability. Remote Sens Environ 115:2175–2183. doi: 10.1016/j.rse.2011.04.007 CrossRefGoogle Scholar
  23. Geoscience Australia (2008) Need for the geodetic component for absolute sea level monitoring. http://www.ga.gov.au/geodesy/slm/spslcmp/. Accessed 11 Dec 2008
  24. Gili JA, Corominas J, Rius J (2000) Using global positioning techniques in landslide monitoring. Eng Geol 155(3):167–192CrossRefGoogle Scholar
  25. German Indonesian Tsunami Early Warning System (GITEWS) (2008) A new approach in tsunami-early warning. Press-Information embargo: 11.11.2008, 10:00 CET. http://www.gitews.de/fileadmin/documents/content/press/GITEWS_operationell_eng_nov-2008.pdf. Accessed 10 Dec 2008
  26. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, and Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paper. http://www.unavco.org/communityscience/sciencehighlights/2010/realtimeGPSWhitePaper2010.pdf. Accessed 6 June 2011
  27. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2011) Scientific value of real-time global positioning system data. Eos 92(15):125–126. doi: 10.1029/2011EO150001 CrossRefGoogle Scholar
  28. Hatfield JL, Prueger JH, Kustas WP (2004) Remote sensing of dryland crops. In: Ustin S. (ed) Remote sensing for natural resources and environmental monitoring: manual of remote sensing, 3rd edn., vol. 4. Wiley, New Jersey, pp 531–568Google Scholar
  29. Helm A, Montenbruck O, Ashjaee J, Yudanov S, Beyerle G, Stosius R, Rothacher M (2007) GORS—a GNSS occultation, reflectometry and scatterometry space receiver. In: Proceedings of the 20th international technical meeting of the satellite division of the institute of navigation ION GNSS 2007, Fort Worth, Texas, 25–28 Sept 2007, pp 2011–2021Google Scholar
  30. Hirt C, Gruber T, Featherstone WE (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical de ections and EGM2008. quasigeoid heights. J Geodesy 85:723–740. doi: 10.1007/s00190-011-0482-y CrossRefGoogle Scholar
  31. Hofman-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system: theory and practice, 5th edn. Springer, WienGoogle Scholar
  32. Hofman-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS Global navigation satellite system: GPS, GLONASS; galileo and more. Springer, WienGoogle Scholar
  33. James LF, Young JA, Sanders K (2003) A new approach to monitoring rangelands. Arid Land Res Manag 17:319–328. doi: 10.1080/15324980390225467 CrossRefGoogle Scholar
  34. Jayaraman V, Chandrasekhar MG, Rao UR (1997) Managing the natural disasters from space technology inputs. Acta Astronaut 40(2–8):291–325CrossRefGoogle Scholar
  35. Jeyaseelan AT (2003) Droughts & Floods Assessment and Monitoring using Remote Sensing and GIS. In: Sivakumar MVK, Roy PS, Harmsen K, Saha SK (eds) Satellite remote sensing and GIS applications in agricultural meteorology. AGM-8, WMO/TD No 1182, 1211, Switzerland, pp 291–313Google Scholar
  36. Jia M (2005) Crustal deformation from the Sumatra-Andaman earthquake. Geoscience Australia’s analysis of the largest earthquake since the beginning of modern space geodesy. Ausgeo news, issue 80Google Scholar
  37. Kadomura H (1994) Climate changes, drought, desertification and land degradation in the Sudano-Sahelian region: a historic geographical perspective. In: Kadomura H (ed) Savannization process in tropical Africa. II. Country briefs. Tokyo Metropolitan University, pp 203–228Google Scholar
  38. Kamik V, Algermissen ST (1978) Seismic zoning—chapter in the assessment and mitigation of earthquake risk, UNESCO, Paris pp 1l–47Google Scholar
  39. Kelecy TM, Born GH, Parke ME, Rocken C (1994) Precise mean sea level measuring using global positioning system. J Geophys Res 99(c4):7951–7959CrossRefGoogle Scholar
  40. Khandu, Awange JL, Wickert J, Schmidt T, Sharifi MA, Heck B, Fleming K (2010) GNSS remote sensing of the Australian tropopause. Clim Change 105(3–4): 597–618. doi: 10.1007/s10584-010-9894-6
  41. Kitron U (1998) Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J Med Entomol 35(4):435–445Google Scholar
  42. Larson KM (2009) GPS seismology. J Geodesy 83:227–233. doi: 10.1007/s00190-008-0233-x CrossRefGoogle Scholar
  43. Leuliette EW, Nerem RS, Mitchum GT (2004) Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change. Marine Geodesy 27(1):79–94. doi: 10.1080/01490410490465193 CrossRefGoogle Scholar
  44. Lowe ST, LaBrecque JL, Zuffada C, Romans LJ, Young L, Hajj GA (2002) First spaceborne observation of an earth-re ected GPS signal. Radio Sci 37(1):1007. doi: 10.1029/2000RS002539 CrossRefGoogle Scholar
  45. Malet JP, Maquaire O, Calais E (2002) The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super- Sauze earthow (Alpes-de-Haute-Provence, France). Geomorphology 43(1–2): 33–54. doi: 10.1016/S0169-555X(01)00098-8
  46. Matsuzaka S (2006) GPS network experience in Japan and its usefulness. Seventeenth united nations regional cartographic conference for Asia and the Pacific. Geographical Survey Institute, Bangkok, Thailand, 18–22 Sept 2006Google Scholar
  47. Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026. doi: 10.1038/35059054 CrossRefGoogle Scholar
  48. Motagh M, Djamour Y, Walter TR, Wetze H, Zschau J, Arabi S (2007) Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, levelling and GPS. Geophys J Int 168:518–526. doi: 10.1111/j.1365- 246X.2006.03246.x CrossRefGoogle Scholar
  49. Nicholson SE, Davenport ML, Malo AR (1990) A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Clim Change 17((2–3):209–241. doi: 10.1007/BF00138369 CrossRefGoogle Scholar
  50. Nittel S, Stefanidis A, Cruz I, Egenhofer M, Goldin D, Howard A, Labrinidis A, Madden S, Voisard A, Worboys M (2004) Report from the first workshop on Geo sensor networks. ACM SIGMOD Record 33(1)Google Scholar
  51. Nittel S, Labrinidis A, Stefanidis A (eds) (2008) GeoSensor networks (Lecture notes in computer science), vol. 4540 Springer, Berlin, pp 1–6.Google Scholar
  52. Omute P, Corner R, Awange J NDVI monitoring of Lake Victoria water level and drought. Water Resour Manag (in press)Google Scholar
  53. Phoon SY, Shamseldin AY, Vairavamoorthy K (2004) Assessing impacts of climate change on lake victoria basin, Africa: people-centred approaches to water and environmental sanitation. 30th Water Engineering and Development Centre (WEDC) International Conference, Vientiane, Lao PDR, pp 392–397Google Scholar
  54. Privette JL, Fowler C, Wick GA, Baldwin D, Emery WJ (1995) Effects of orbital drift on advanced very high resolution radiometer products: normalized difference vegetation index and sea surface temperature. Remote Sens Environ 53(3):164–171. doi: 10.1016/0034-4257(95)00083-D CrossRefGoogle Scholar
  55. Pugh D (2004) Changing sea levels. Effect of tides, weather and climate. Cambridge Univeristy Press, CambridgeGoogle Scholar
  56. Rius A, Aparicio JM, Cardellach E, Martín-Neira M, Chapron B (2002) Sea surface state measured using GPS re ected signals. Geophys Res Lett 29(23):2122. doi: 10.1029/2002GL015524 CrossRefGoogle Scholar
  57. Rocken C, Kelecy TM, Born GH, Young LE, Purcell GH, Wolf SK (1990) Measuring precise sea level from a buoy using the global positioning system. Geophy Res Lett 17(12):2145–2148CrossRefGoogle Scholar
  58. Sagiya T (2005) A decade of GEONET: 1994-2003 The continuous GPS observation in Japan and its impact on earthquake studies. Earth Planets Space (56): xxix–xliGoogle Scholar
  59. Schenk A (2006) Intepreting surface displacement in Tehran/Iran region observed by Differential Synthetic Aperture Radar Inteferometry (DINSAR). MSc Thesis, Technical University of BerlinGoogle Scholar
  60. Segall P, Davis JL (1997) GPS applications for geodynamics and earthquake studies. Annu REV Earth Planetary Sci 25:301–336. doi: 10.1191/1464993403ps060oa
  61. Snay R, Soler T (2008) Continuously operating reference station (CORS): history, applications, and future enhancements. J Surv Eng 134 (4): 95–104. doi: 10.1061/(ASCE)0733-9453(2008)134:4(95)
  62. Snay R, Cline M, Dillinger W, Foote R, Hilla S, Kass W, Ray J, Rohde J, Sella G, Soler T (2007) Using global positioning system-derived crustal velocities to estimate rates of absolute sea level change from North American tide gauge records. J Geophys Res 112:B04409CrossRefGoogle Scholar
  63. Steede-Terry K (2000) Integrating GIS and the global positioning system. ESRI Press, CaliforniaGoogle Scholar
  64. Stefanidis A (2006) The emergence of geoSensor networks. Dir Mag. http://www.directionsmag.com/articles/the-emergence-of-geosensornetworks/123208. Accessed 22 Jan 2011
  65. Terhorst A, Moodley D, ISimonis I, Frost P, McFerren G, Roos S, van den Bergh F (2008) Using the sensor web to detect and monitor the spread of vegetation fires in southern Africa. In: Nittel S, Labrinidis A, Stefanidis A (eds) GeoSensor networks (Lecture Notes in computer science), vol 4540. Springer, Berlin, pp 239–251.Google Scholar
  66. Titus JG, Park RA, Leatherman SP, Weggel JR, Greene MS, Mausel PW, Brown S, Gaunt G, Trehan M, Yohe G (1991) Greenhouse effect and sea level rise: the cost of holding back the sea. Coast Manag 19:171–204Google Scholar
  67. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777CrossRefGoogle Scholar
  68. Trenberth K, Guillemot C (1996) Evaluation of the atmospheric moisture and hydrological cycle in the NCEP reanalyses. NCAR Technical Note TN-430, DecemberGoogle Scholar
  69. Ummenhofer C, England M, McIntosh P, Meyers G, Pook M, Risbey J, Gupta A, Taschetto A (2009) What causes southeast Australias worst droughts. Geophys Res Lett 36:L04706. doi: 10.1029/2008GL036801 CrossRefGoogle Scholar
  70. US Army Corps of Engineers (2007) NAVSTAR Global positioning system surveying. Engineering and Design Manual, EM 1110-1-1003Google Scholar
  71. Warrick RA, Le Provost C, Meier MF, Oerlemans J,Woodworth PL (1996) Changes in sea level. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Klattenberg A, Maskell K (eds.). Climate change 1995, The science of climate change. Cambridge University Press, Cambridge, pp 359–405Google Scholar
  72. Watson C, Coleman R, White N, Church J, Govind R (2003) Absolute calibration of TOPEX/Poseidon and Jason-1 using GPS buoys in bass strait, Australia. Marine Geodesy 26(3-4):285–304. doi: 10.1080/01490410390256745 CrossRefGoogle Scholar
  73. Worboys M, Duckham M (2006) Monitoring qualitative spatiotemporal change for geosensor networks. Int J Geogr Inf Sci 20(10):1087–1108. doi: 10.1080/13658810600852180 CrossRefGoogle Scholar
  74. Zhanga J, Zhoub C, Xua K, Watanabe M (2002) Flood disaster monitoring and evaluation in China. Environ Hazards 4:33–43. doi: 10.1016/S1464-2867(03)00002-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joseph L. Awange
    • 1
    • 2
    • 3
    • 4
  1. 1.Maseno UniversityMasenoKenya
  2. 2.Curtin UniversityPerthAustralia
  3. 3.Karlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Kyoto UniversityKyotoJapan

Personalised recommendations