Coastal Resources

  • Joseph L. Awange
Part of the Environmental Science and Engineering book series (ESE)


Marine habitats are comprised of zones termed coastal terrestrial , open water, and the ocean bottom until several meters deep. Several physical parameters, e.g., temperature , salinity , tides, currents, winds, etc., play a major role in defining the marine habitat. Malthus and Mumby have listed marine ecosystem to comprise mangroves, seagrasses, coral reefs, lagoonal microbial mats, shoreline features, sub-littoral zone benthos and overlaying water column features. The reflectance of these features can be measured by remote sensing methods to provide synoptic data at various scales. Such data are essential requirements for coastal managers to be able to address issues facing these diverse habitats. In most countries, these environments are either being degraded or not inventoried. This is due partly to inaccessibility and partly due to large spatial coverage, leading to high costs when applying conventional methods.


Coral Reef Coastal Erosion Marine Habitat Minimum Description Length Shoreline Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Angulo RJ, Soares CR, Souza MC (2000) Excursion route along the state of Paraná (PR). 31st International Geological Congress. Rio de Janeiro, August 6–17, pp 58–81Google Scholar
  2. Boak EH, Turner IL (2005) Shoreline definition and detection: a review. J Coastal Research 21(4):688–703. doi: 10.2112/03-0071.1 CrossRefGoogle Scholar
  3. Call KA, Hardy JT, Wallin DO (2003) Coral reef habitat discrimination using multivariate spectral analysis and satellite remote sensing. Int J Remote Sens 24:2627–2639. doi: 10.1080/0143116031000066990 CrossRefGoogle Scholar
  4. Crowell M, Douglas BC, Leatherman SP (1997) On forecasting future U.S. shoreline positions: a test of algorithms. J Coast Res 13(4):1245–1255Google Scholar
  5. Demarest JM, Leatherman SP (1985) Mainland in uence on coastal transgression: Delmarva Peninsula. Marine Geol 63:19–33CrossRefGoogle Scholar
  6. Douglas BC, Crowell M, Leatherman SP (1998) Considerations for shoreline position prediction. J Coast Res 14(3):1025–1033Google Scholar
  7. Douglas BC, Crowell M (2000) Long-term shoreline position prediction and error propagation. J Coast Res 16(1):145–152Google Scholar
  8. Ferentinos KP, Trigoni N, Nittel S (2008) Impact of drifter deployment on the quality of ocean sensing. In: Nittel S, Labrinidis A, Stefanidis A (eds) Geosensor networks, Lecture notes in Computer Science 4540. pp 9–24 Springer, BerlinGoogle Scholar
  9. Fenster MS, Dolan R, Elder JF (1993) New method for predicting shoreline positions from historical data. J Coast Res 9(1):147–171Google Scholar
  10. Fenster MS, Dolan R, Morton RA (2000) Coastal storms and shoreline change: signal or noise? J Coast Res 17(3):714–720Google Scholar
  11. Galgano FA, Douglas BC, Leatherman SP (1998) Trends and variability of shoreline position. J Coast Res 26:282–291Google Scholar
  12. Galgano FA, Douglas BC (2000) Shoreline position prediction: methods and errors. Environ Geosci 7(1):1–10. doi: 10.1046/j.1526-0984.2000.71006.x CrossRefGoogle Scholar
  13. Gibeaut JC, Hepner T, Waldinger R, Andrews J, Gutierrez R, Tremblay TA, Smyth R, Xu L (2001) Changes in gulf shoreline position, Mustang, and North Padre Islands, Texas. A report of the Texas Coastal Coordination Council pursuant to National Oceanic and Atmospheric Administration. Bureau of Economic Geology, The University of Texas, Austin TexasGoogle Scholar
  14. Goncalves RM (2010) Short-term trend modeling of the shoreline through geodetic data using linear regression, robust estimation and artificial neural networks. Ph.D. Thesis, Geodetic Sciences Post-graduate Program, Federal University of Parana (UFPR), Curitiba, Brazil, p 152Google Scholar
  15. Gorman L, Morang A, Larson R (1998) Monitoring the coastal environment; Part IV: mapping, shoreline changes, and bathymetric analysis. J Coast Res 14:61–92Google Scholar
  16. Hecky RE, Newbury RW, Bodaly RA, Patalas K, Rosenberg DM (1984) Environmental impact prediction and assessment: the southern Indian lake experience. Can J Fish Aquatic Sci 41(4):720–732CrossRefGoogle Scholar
  17. Held A, Ticehurst C, Lymburner L, Williams N (2003) High resolution mapping of tropical mangrove ecosystems using hyperspectral and radar remote sensing. Int J Remote Sens 24:2739–2759. doi: 10.1080/0143116031000066323 CrossRefGoogle Scholar
  18. Karpouzli E, Malthus T, Place C, Chui MA, Garcia MI, Mair J (2003) Underwater light characterization for correction of remotely sensed images. Int J Remote Sens 24:2683–2702. doi: 10.1080/0143116031000066972 CrossRefGoogle Scholar
  19. Krueger CP, Centeno JA, Mitishita EA, Veiga LAK, Zocolotti CAJ, Jubanski MJ (2002) Determinacao da linha de costa na regiao de Matinhos. Anais do Simpsio Brasileiro de Geomtica, Presidente Prudente - SP, pp 206–211Google Scholar
  20. Li R, Di K, Ma R (2001) A comparative study of shoreline mapping techniques. In: The 4th International symposium on computer mapping and GIS for coastal zone management, Nova Scotia, Canada, June 18–20Google Scholar
  21. Malthus TJ, Mumby PJ (2007) Remote sensing of the coastal zone: an overview and priorities for future research. Int J Remote Sens 24(13):2805–2815. doi: 10.1080/0143116031000066954 CrossRefGoogle Scholar
  22. Metropolitan Borough of Sefton (2002) Shoreline monitoring annual report 2001/2002. [Accessed on 14 Nov 2008]
  23. Morton RA, Leach MP, Paine JG, Cardoza MA (1993) Monitoring beach changes using gps surveying techniques. J Coast Res 9(3):702–720Google Scholar
  24. Mumby PJ, Green EP, Edwards AJ, Clark CD (1997) Coral reef habitat mapping: how much details can remote sensing provide? Marine Biology 130:193–202CrossRefGoogle Scholar
  25. Pettigrew NR, Roesler CS, Neville F, Deese HE (2008) An operational real-time ocean sensor network in the Gulf of Maine. In: Nittel S, Labrinidis A, Stefanidis A (eds) Geosensor networks, Lecture notes in Computer Science 4540. pp 213–238 Springer, BerlinGoogle Scholar
  26. Pierri N, Angulo RJ, Souza MC, Kim MK (2006). A ocupação e o uso do solo no litoral paranaense: condicionantes, conflitos e tendencias. Desenvolvimento e meio ambiente. Ocupação e o uso do solo costeiro um mosaico de diversidade (13), editora UFPR, pp 137–167Google Scholar
  27. Schiff KC, Weisberg SB (2001) Microbiological monitoring of marine recreational waters in Southern California. Environ Manag 27(1):149–157. doi: 10.1007/s002670010140 CrossRefGoogle Scholar
  28. Soares CR, Vobel I, Paranhos Filho AC (1995) The marine erosion problem in Matinhos municipality. In: Land Ocean Interactions on the Coastal Zone, 1995, São Paulo. Boletim de Reumos do land ocean interactions on the coastal zone, pp 48–50Google Scholar
  29. Suguio K (1992) Dicionaário de geologia marinha. Queiroz TA, S~ao Paulo p 171Google Scholar
  30. White K, Asmar EL (1999) Monitoring changing position of coastlines using thematic mapper imagery, an example from the Nile Delta. Geomorphology 29(1–2):93–105. doi: 10.1016/S0169-555X(99)00008-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joseph L. Awange
    • 1
    • 2
    • 3
    • 4
  1. 1.Maseno UniversityMasenoKenya
  2. 2.Curtin UniversityPerthAustralia
  3. 3.Karlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Kyoto UniversityKyotoJapan

Personalised recommendations