Discovery of Nanotubes in Ancient Damascus Steel

  • Marianne Reibold
  • Peter Paufler
  • Aleksandr A. Levin
  • Werner Kochmann
  • Nora Pätzke
  • Dirk C. Meyer
Part of the Springer Proceedings in Physics book series (SPPHY, volume 127)


Using high-resolution electron microscopy, we have found in a sample of Damascus sabres from the 17th century both cementite nanowires and carbon nanotubes. These might be the missing link between the banding and ancient recipes to make that ultrahigh carbon steel. The sample considered belonged to the wootz-type of Damascus steel which is fundamentally different from welded Damast. The nanotubes have only been revealed after dissolution of the sample in hydrochloric acid. Some remnants showed not yet completely dissolved cementite nanowires, suggesting that these wires were encapsulated by carbon nanotubes. Only recently, considerable progress has been achieved in reproducing the process of making the characteristic pattern of wootz. We propose a connection between impurity segregation, nanotube formation, nanotube filling with cementite, cementite wire growth, and formation of large cementite particles. Needless to say that the presence of a nanostructure will have an impact upon the mechanical properties.


Carbon Nanotubes Fringe Spacing Impurity Segregation Crucible Steel Steel Blade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Piaskowski, O stali damascenskiej. Wroclaw 1974.Google Scholar
  2. 2.
    J. Wadsworth and O.D.Sherby, Progr. Mater. Sci. 25, 35,1980CrossRefGoogle Scholar
  3. 3.
    J.D. Verhoeven, Scientific American 284(1), 74,2001PubMedCrossRefGoogle Scholar
  4. 4.
    A. Feuerbach, JOM 58(5),48, 2006CrossRefADSGoogle Scholar
  5. 5.
    J.D. Verhoeven, Steel research 73, 356, 2002Google Scholar
  6. 6.
    J. Wadsworth, MRS Bulletin 27, 980, 2002Google Scholar
  7. 7.
    B. Zschokke, Rev. de Métallurgie 21, 635,1924Google Scholar
  8. 8.
    J. Piaskowski, J.Hist.Arabic Sci. 2, 3, 1978Google Scholar
  9. 9.
    J.D. Verhoeven, and L.L. Jones, Metallogra phy 20, 153,1987CrossRefGoogle Scholar
  10. 10.
    J.D. Verhoeven, A.H. Pendray, and W.E. Dauksch, JOM 50, 58, 1998CrossRefGoogle Scholar
  11. 11.
    R. Zeller, Jahrbuch des Bernischen Historischen Museums 4, 24, 1924Google Scholar
  12. 12.
    A.A. Levin; D.C. Meyer, M. Reibold, W. Kochmann, N. Pätzke, and P. Paufler, Cryst. Res.Technol. 40, 905, 2005CrossRefGoogle Scholar
  13. 13.
    W. Kochmann, M. Reibold, R. Goldberg, W. Hauffe, A.A. Levin, D.C. Meyer, T. Stephan, H. Müller, A. Belger, and P. Paufler, J.Alloys & Comp. 372, L15, 2004CrossRefGoogle Scholar
  14. 14.
    M. Reibold, A.A. Levin, D.C. Meyer, P. Paufler, and W. Kochmann, Intl. J. of Materials Research 97, 1172, 2006Google Scholar
  15. 15.
    M. Reibold, P. Paufler, A.A. Levin, W. Kochmann, N. Pätzke, and D.C. Meyer, Nature 444, 286, 2006PubMedCrossRefADSGoogle Scholar
  16. 16.
    W. Kochmann, P. Paufler, M. Reibold, A.A. Levin, and D.C. Meyer, Sitzungsber. Leibniz-Sozietät 85, 109, 2006Google Scholar
  17. 17.
    N. Belaiew, J. Iron Steel Inst. 97, 417, 1918; 104, 181,1921Google Scholar
  18. 18.
  19. 19.
    L.A. Chernozatonskii, V.P. Val'chuk, N.A. Kiselev, O.I. Lebedev, A.B. Ormont, and D.N. Zakharov, Carbon 35, 749, 1997CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marianne Reibold
    • 1
  • Peter Paufler
    • 1
  • Aleksandr A. Levin
    • 1
  • Werner Kochmann
    • 2
  • Nora Pätzke
    • 1
  • Dirk C. Meyer
    • 1
  1. 1.Institut f. Strukturphysik, Triebenberg Lab., FR PhysikTechnische Universität DresdenDresdenGermany
  2. 2.KrüllsstrWolfenGermany

Personalised recommendations