Formation of Chiral Aggregates of Tetralactam Macrocycles on the Au(111) Surface

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 127)


Monolayers of a large tetralactam macrocycle were prepared by vacuum sublimation on the Au(111) surface and investigated by scanning tunnelling microscopy. The macrocycles form three different highly ordered monolayer structures α, β, and η. The α and β structure are stable at room temperature and can be understood as two dimensional networks which are held together by hydrogen bonds between the next neighbour molecules. These structures were described in detail before [Kossev et al., Adv. Mat. 17, 513 (2007)]. The third structure, which is described here, is only observed after heating at 400 K and rapid cooling to low temperatures. It consists of chiral aggregates, composed of three molecules. These aggregates are either left or right handed. The surface is covered by a racemic mixture of long range ordered domains with either left or right handed aggregates.


supramolecular structures chirality macrocycle scanning probe microscopy self-organization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Umbach, M. Sokolowski, and R. Fink, Applied Physics A: Materials Science & Processing 63, 565 (1996).CrossRefADSGoogle Scholar
  2. 2.
    S. M. Barlow and R. Raval, Surf. Sci. Rep. 50, 201 (2003).CrossRefADSGoogle Scholar
  3. 3.
    B. A. Hermann, L. J. Scherer, C. E. Housecroft, and E. C. Constable, Advanced Functional Materials 16, 221 (2006).CrossRefGoogle Scholar
  4. 4.
    J. V. Barth, J. Weckesser, C. Cai, P. Günter, L. Bürgi, O. Jeandupeux, and K. Kern, Angewandte Chemie International Edition 39, 1230 (2000).CrossRefGoogle Scholar
  5. 5.
    V. Balzani, A. Credi, and M. Venturi, Molecular Devices and Machines (Wiley-VCH, Weinheim, 2003).CrossRefGoogle Scholar
  6. 6.
    K. H. Ernst, in Topics in Current Chemistry (Springer Verlag, Berlin, 2006), Vol. 265, p. 209.Google Scholar
  7. 7.
    I. Kossev, W. Reckien, B. Kirchner, T. Felder, M. Nieger, C. A. Schalley, F. Vögtle, and M. Sokolowski, Advanced Functional Materials 17, 513 (2007).CrossRefGoogle Scholar
  8. 8.
    C. A. Hunter, Journal of the American Chemical Society 114, 5303 (1992).CrossRefGoogle Scholar
  9. 9.
    F. Vögtle, S. Meier, and R. Hoss, Angewandte Chemie International Edition in English 31, 1619 (1992).CrossRefGoogle Scholar
  10. 10.
    S. Ottens-Hildebrandt, S. Meier, W. Schmidt, and F. Vögtle, Angewandte Chemie International Edition in English 33, 1767 (1994).CrossRefGoogle Scholar
  11. 11.
    R. Hoss and F. Vögtle, Angewandte Chemie International Edition in English 33, 375 (1994).CrossRefGoogle Scholar
  12. 12.
    O. Lukin and F. Vögtle, Angewandte Chemie International Edition 44, 1456 (2005).CrossRefGoogle Scholar
  13. 13.
    P. Ghosh, O. Mermagen, and C. A. Schalley, Chemical Communications, 2628 (2002).Google Scholar
  14. 14.
    T. Felder and C. A. Schalley, Angewandte Chemie International Edition 42, 2258 (2003).CrossRefGoogle Scholar
  15. 15.
    P. Ghosh, G. Federwisch, M. Kogej, C. A. Schalley, D. Haase, W. Saak, A. Lützen, and R. M. Gschwind, Organic & Biomolecular Chemistry 3, 2691 (2005).CrossRefGoogle Scholar
  16. 16.
    C. A. Schalley, T. Weilandt, J. Brüggemann, and F. Vögtle, Topics in Current Chemistry 248, 141 (2004).Google Scholar
  17. 17.
    C. A. Schalley, W. Reckien, S. Peyerimhoff, B. Baytekin, and F. Vögtle, Chemistry – A European Journal 10, 4777 (2004).CrossRefGoogle Scholar
  18. 18.
    T. Steiner, Angewandte Chemie 114, 50 (2002).CrossRefGoogle Scholar
  19. 19.
    C. M. Whelan, F. Cecchet, R. Baxter, F. Zerbetto, G. J. Clarkson, D. A. Leigh, and P. Rudolf, J. Phys. Chem. B 106, 8739 (2002).CrossRefGoogle Scholar
  20. 20.
    I. Kossev, S. Fahrenholz, A. Görling, W. Hieringer, C. A. Schalley, and M. Sokolowski, Synthetic Metals 147, 159 (2004).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institut für Physikalische und Theoretische Chemie der Universität BonnBonnGermany
  2. 2.Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnBonnGermany
  3. 3.Insitut für Chemie und Biochemie – Organische ChemieFreie Universität BerlinBerlinGermany

Personalised recommendations