Growth and Structure of Zinc Oxide Nanostructured Layer Obtained by Spray Pyrolysis

  • Son Vo Thach
  • Michel Jouan
  • Sang Nguyen Xuan
  • Thoan Nguyen Hoang
  • Hung Pham Pham Phi
Part of the Springer Proceedings in Physics book series (SPPHY, volume 127)


Undoped zinc oxide nanostructured layers were prepared on glass substrates by the spray pyrolysis technique using 0.1– 0.2 mol/l aqueous solution of Zn(CH3CO2)2.2H2O in the temperature range 350–570°C. The nanostructured layers were characterized by SEM, XRD and UV-VIS spectrophotometry. A nanostructured layer evolved into the form of single crystalline hexagonal prisms with the formation of nanorods at different deposition temperatures. The increase of the deposition temperature and of the solution concentration had a significant influence on the nanorod dimensions. We found that the formation of flower-like deposits occurred at 550°C. X-ray diffraction revealed that the ZnO nano-structured layers growing from 0.1 and 0.2 mol/l in the temperature range 450–570°C were c-axis-oriented with the (002) orientation in most of the samples. UV-VIS investigation showed the dependence of refractive indices and thickness on the deposition temperature.


Deposition Temperature Spray Pyrolysis Zinc Oxide Optical Transmittance Spectrum Spray Pyrolysis Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Krunks, T. Dedova, I. Oja Acik, Thin Solid Films, Vol. 515, 1157, 2006.CrossRefADSGoogle Scholar
  2. 2.
    F. Paragoay, D.W. Estrada, L.D.R. Acosta, N.E. Andrade, M. Miki-Yoshida, Thin Solid Films, Vol. 350, 192, 2006.CrossRefGoogle Scholar
  3. 3.
    J.L. van Heerden, R. Swanepoel, Thin Solid Films, Vol. 299, 72, 1997.CrossRefADSGoogle Scholar
  4. 4.
    M. Krunks, E. Mellikov, Thin Solid Films, 270 (1995) 33CrossRefADSGoogle Scholar
  5. 5.
    Ashour, M.A. Kaid, N.Z. El-Sayed, A.A. Ibrahim, Applied Surface Science, Vol. 252, 7844, 2006.CrossRefADSGoogle Scholar
  6. 6.
    S. Tirado-Guerra, M. de la L. Olvera, A. Maldonado, L. Castaneda, Solar Energy Materials & Solar Cells, Vol. 90, 2346, 2006.CrossRefGoogle Scholar
  7. 7.
    C. Gumus, O.M. Ozkendir, Y. Ufuktefe, Journal of optoelectronics and advanced materials, Vol. 8, No.1, p. 299, Feb 2006.Google Scholar
  8. 8.
    B. Joseph, P. K. Monoj and Vaidyan, Bull. Materials Science, Vol. 28, No. 5, p. 487, August 2005.CrossRefGoogle Scholar
  9. 9.
    M. Andres-Verges, M. Martinez-Gallego, A. Lozano-Vila, and J. Diaz-Alvares, Current Issues on Multidisciplinary Microscopy Research and education.Google Scholar
  10. 10.
    P.S. Patil, Materials chemistry and physics, Vol. 59, 185, 1999.CrossRefMathSciNetGoogle Scholar
  11. 11.
    P. Nunes, E. Fortunato, R. Martins, Thin solid film, Vol. 383, 277, 2001.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Son Vo Thach
    • 1
  • Michel Jouan
    • 2
  • Sang Nguyen Xuan
    • 1
  • Thoan Nguyen Hoang
    • 1
  • Hung Pham Pham Phi
    • 1
  1. 1.Institute of Engineering PhysicsHanoi University of TechnologyHanoiVietnam
  2. 2.Laboratoire SPMS - UMR 8580 du CNRS, Ecole Centrale Paris (ECP) Grande Voie des VignesFrance

Personalised recommendations