Practical Automated Partial Verification of Multi-paradigm Real-Time Models

  • Carlo A. Furia
  • Matteo Pradella
  • Matteo Rossi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5256)

Abstract

This article introduces a fully automated verification technique that permits to analyze real-time systems described using a continuous notion of time and a mixture of operational (i.e., automata-based) and descriptive (i.e., logic-based) formalisms. The technique relies on the reduction, under reasonable assumptions, of the continuous-time verification problem to its discrete-time counterpart. This reconciles in a viable and effective way the dense/discrete and operational/descriptive dichotomies that are often encountered in practice when it comes to specifying and analyzing complex critical systems. The article investigates the applicability of the technique through a significant example centered on a communication protocol. Concurrent runs of the protocol are formalized by parallel instances of a Timed Automaton, while the synchronization rules between these instances are specified through Metric Temporal Logic formulas, thus creating a multi-paradigm model. Verification tests run on this model using a bounded satisfiability checker implementing the technique show consistent results and interesting performances.

Keywords

Metric temporal logic timed automata discretization dense time bounded model checking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal of the ACM 43(1), 116–146 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  4. 4.
    Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Information and Computation 104(1), 35–77 (1993)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: from timed models to timed implementations. Formal Aspects of Computing 17(3), 319–341 (2005)CrossRefMATHGoogle Scholar
  6. 6.
    Fainekos, G.E., Pappas, G.J.: Robust sampling for MITL specifications. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Furia, C.A.: Scaling up the formal analysis of real-time systems. PhD thesis, DEI, Politecnico di Milano (May 2007)Google Scholar
  8. 8.
    Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling time in computing. Technical Report 2007.22, DEI, Politecnico di Milano (January 2007)Google Scholar
  9. 9.
    Furia, C.A., Pradella, M., Rossi, M.: Automated verification of dense-time MTL specifications via discrete-time approximation. In: Cuellar, J., Maibaum, T.S.E. (eds.) FM 2008. LNCS, vol. 5014, pp. 132–147. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Furia, C.A., Pradella, M., Rossi, M.: Practical automated partial verification of multi-paradigm real-time models (April 2008), http://arxiv.org/abs/0804.4383
  11. 11.
    Furia, C.A., Rossi, M.: Integrating discrete- and continuous-time metric temporal logics through sampling. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 215–229. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  13. 13.
    Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–591. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  15. 15.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal on Software Tools for Technology Transfer 1(1–2) (1997)Google Scholar
  16. 16.
    Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Pradella, M.: zot (March 2007), http://home.dei.polimi.it/pradella
  18. 18.
    Pradella, M., Morzenti, A., San Pietro, P.: The symmetry of the past and of the future: bi-infinite time in the verification of temporal properties. In: Proc. of ESEC/FSE 2007 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carlo A. Furia
    • 1
  • Matteo Pradella
    • 2
  • Matteo Rossi
    • 1
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoItaly
  2. 2.CNR IEIIT-MIMilanoItaly

Personalised recommendations