A Non-symmetrical Method of Image Local-Difference Comparison for Ancient Impressions Dating

  • Étienne Baudrier
  • Nathalie Girard
  • Jean-Marc Ogier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5046)


In this article, we focus on the dating of images (impressions, ornamental letters) printed starting from the same stamp. This difficult task needs a good observation of the differences between the compared images. We present a method, based on a local adaptation of the Hausdorff distance, that evaluates locally the image differences. It allows the user to visualize these differences. A description of the pertinent differences for the dating allows us to evaluate our method visualization ability. Then our method is successfully compared to the existing method. Finally, a framework for a future automatic dating method is presented.


Image comparison binary images Hausdorff distance local dissimilarity measure visualization ancient images dating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baird, H.S.: Digital library and document image analysis. In: Proc. of the 7th Int. Conf. on Document Analysis and Recognition (ICDAR), IAPR, pp. 1–13 (2003)Google Scholar
  2. 2.
    Baudrier, E., Riffaud, A.: A method for image local-difference visualization. In: Proc. of the 9th Int. Conf. on Document Analysis and Recognition (ICDAR), Brazil, IAPR (2007)Google Scholar
  3. 3.
    Huttenlocher, D.P., Klanderman, D., Rucklidge, W.J.: Comparing images using the Hausdorff distance. Trans. on Pattern Analysis and Machine Intel. 15(9), 850–863 (1993)CrossRefGoogle Scholar
  4. 4.
    Takàcs, B.: Comparing faces using the modified Hausdorff distance. Pattern Recognition 31(12), 1873–1881 (1998)CrossRefGoogle Scholar
  5. 5.
    Paumard, J.: Robust comparison of binary images. Pattern Recognition Letters 18(10), 1057–1063 (1997)CrossRefGoogle Scholar
  6. 6.
    Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proc. of the Int. Conf. on Pattern Recognition (ICPR), IAPR, pp. 566–568 (1994)Google Scholar
  7. 7.
    Sim, D.G., Kwon, O.K., Park, R.H.: Object matching algorithms using robust Hausdorff distance measures. IEEE Trans. on Image Processing 8(3), 425–429 (1999)CrossRefGoogle Scholar
  8. 8.
    Lu, Y., Tan, C., Huang, W., Fan, L.: An approach to word image matching based on weighted Hausdorff distance. In: Proc. 6th Internat. Conf. on Document Anal. Recogn., pp. 921–925 (2001)Google Scholar
  9. 9.
    Zhao, C., Shi, W., Deng, Y.: A new Hausdorff distance for image matching. Pattern Recognition Letters (2004)Google Scholar
  10. 10.
    Baudrier, E., Millon, G., Nicolier, F., Ruan, S.: Binary-image comparison with local-dissimilarity quantification. Pattern Recognition 41(5), 1461–1478 (2008)MATHCrossRefGoogle Scholar
  11. 11.
    Ramel, J., Busson, S., Demonet, M.: Agora: the interactive document image analysis tool of the BVH project. In: Conf. on Document Image Analysis for Library, pp. 145–155 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Étienne Baudrier
    • 1
  • Nathalie Girard
    • 2
  • Jean-Marc Ogier
    • 2
  1. 1.Laboratoire Signal Images CommunicationUniversité de PoitiersFuturoscope Chasseneuil CedexFrance
  2. 2.Laboratoire d’Informatique, Image et InteractionsUniversité de La RochelleLa Rochelle Cedex 1France

Personalised recommendations