Advertisement

Diffusive Spin Transport

  • C.A. Müller
Part of the Lecture Notes in Physics book series (LNP, volume 768)

Keywords

Density Matrix Irreducible Representation Master Equation Spin Relaxation Kraus Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Žutić, J. Fabian, and S. Das Sarma: Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    M. Chaichian and R. Hagedorn: Symmetries in Quantum Mechanics (IOP Publishing, Bristol 1998)zbMATHCrossRefGoogle Scholar
  3. 3.
    L. C. Biedenharn and J. D. Louck: Angular Momentum in Quantum Mechanics. In:Encyclopedia of Mathematics, vol. 8 (Addison Wesley, New York 1981)Google Scholar
  4. 4.
    G. E. Uhlenbeck and S. Goudsmit: Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons, Naturwiss. 13, 953 (1925)CrossRefGoogle Scholar
  5. 5.
    W. Pauli: über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren, Z. Phys. 31, 765 (1925)CrossRefADSGoogle Scholar
  6. 6.
    W. Gerlach and O. Stern: Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld, Z. Phys. 9, 349 (1922)Google Scholar
  7. 7.
    D. J. Gross: Symmetry in Physics: Wigner’s legacy, Physics Today (December 1995) p. 46.Google Scholar
  8. 8.
    E. Cartan: Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bull. Soc. Math. France 41, 53 (1913)zbMATHMathSciNetGoogle Scholar
  9. 9.
    H. Weyl: The Theory of Groups and Quantum Mechanics (Dover Publications, New York 1950), first published as Gruppentheorie und Quantenmechanik in 1928Google Scholar
  10. 10.
    H.-D. Zeh: The Physical Basis of the Direction of Time (Springer, New York 2001) Chap. 3zbMATHGoogle Scholar
  11. 11.
    N. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Amsterdam 1990)Google Scholar
  12. 12.
    M. A. Nielsen and I. L. Chuang: Quantum Computation and Quantum Information (Cambridge University Press, Cambridge 2002)Google Scholar
  13. 13.
    W. G. Ritter: Quantum channels and representation theory, J. Math. Phys. 46, 082103 (2005)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    E. Fick and G. Sauermann: The Quantum Statistics of Dynamic Processes, Series in Solid-State Science vol. 86 (Spinger, New York 1990)Google Scholar
  15. 15.
    R. Zwanzig: On the identity of three generalized master equations, Physica 30, 1109 (1964)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    H. Gabriel: Theory of the influence of environment on the angular distribution of nuclear radiation, Phys. Rev. 181, 506 (1969), especially the appendixCrossRefADSGoogle Scholar
  17. 17.
    Preskill, J.: Quantum Information and Computing. Lect. Notes Phys. 229, Chap. 3 (1998), http://www.theory.caltech.edu/people/preskill/ph229/
  18. 18.
    C. W. Gardiner and P. Zoller: Quantum Noise (Springer, New York 2004)zbMATHGoogle Scholar
  19. 19.
    S. Mukamel: Superoperator representation of nonlinear response: Unifying quantum field and mode coupling theories, Phys. Rev. E 68, 021111 (2004)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    K. Blum, Density Matrix Theory and Applications (Plenum Press, New York 1996)Google Scholar
  21. 21.
    U. Fano and G. Racah: Irreducible Tensorial Sets (Academic Press, New York 1959)Google Scholar
  22. 22.
    U. Fano: Description of states in quantum mechanics by density matrix and Operator techniques, Rev. Mod. Phys. 29, 74 (1957)zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    C. A. Müller, C. Miniatura, E. Akkermans and G. Montambaux: Mesoscopic scattering of spin s particles, J. Phys. A: Math. Gen. 38, 7807 (2005)zbMATHCrossRefADSGoogle Scholar
  24. 24.
    M. Fannes, B. Nachtergaele, and R. F. Werner: Exact antiferromagnetic ground states of quantum spin chains, Europhys. Lett. 10, 633–637 (1989)CrossRefADSGoogle Scholar
  25. 25.
    T. F. Havel: Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups, J. Math. Phys. 44, 534 (2003)zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    J. Rammer, Quantum Transport Theory (Perseus Books, Reading, 1998)Google Scholar
  27. 27.
    J. F. Cornwell: Group Theory in Physics. An Introduction (Academic Press, New York 1997)zbMATHGoogle Scholar
  28. 28.
    H.-P. Breuer and F. Petruccione: The Theory of Open Quantum Systems (Oxford University Press, Oxford 2002)zbMATHGoogle Scholar
  29. 29.
    M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner: Distribution function in physics: fundamentals, Phys. Rep. 106, 121–167 (1984)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    R. Balian: From Microphysics to Macrophysics, vol. II (Springer, New York 1992)zbMATHGoogle Scholar
  31. 31.
    M. Le Bellac, F. Mortessagne, and G. Batrouni: Equilibrium and Nonequilibrium Statistical Thermodynamics (Oxford University Press, Oxford, 2002)Google Scholar
  32. 32.
    N. W. Ashcroft and N. D. Mermin: Solid State Physics (Harcourt Brace, New York 1976)Google Scholar
  33. 33.
    G. Bergmann: Weak localization in this films: a time-of-flight experiment with conduction electrons, Phys. Rep. 107, 1 (1984)CrossRefADSGoogle Scholar
  34. 34.
    W. Zwerger: Theory of coherent transport. In: Quantum Transport and Dissipation, ed. T. Dittrich et al., (Wiley–VCH, New York 1998)Google Scholar
  35. 35.
    F. Pierre, A. B. Gougam, A. Anthore, H. Pothier, D. Estève, and N. Birge, Dephasing of electrons in mesoscopic metal wires, Phys. Rev. B 68, 085413 (2003)ADSGoogle Scholar
  36. 36.
    G. Labeyrie, D. Delande, C. A. Müller, C. Miniatura, and R. Kaiser: Coherent backscattering of light by cold atoms: theory meets experiment, Europhys. Lett. 61, 327 (2003)CrossRefADSGoogle Scholar
  37. 37.
    C. A. Müller and C. Miniatura: Multiple scattering of light by atoms with internal degeneracy, J. Phys. A: Math. Gen. 35, 10163 (2002)zbMATHCrossRefGoogle Scholar
  38. 38.
    S. Washburn and R. Webb: Aharonov–Bohm effect in normal metal: quantum coherence and transport, Adv. Phys. 35, 375 (1986)CrossRefADSGoogle Scholar
  39. 39.
    F. Pierre and N. Birge: Dephasing by extremely dilute magnetic impurities revealed by Aharonov–Bohm oscillations, Phys. Rev. Lett. 89, 206804 (2002)CrossRefADSGoogle Scholar
  40. 40.
    O. Sigwarth, G. Labeyrie, T. Jonckheere, D. Delande, R. Kaiser, and C. Miniatura: Magnetic field enhanced coherence length in cold atomic gases, Phys. Rev. Lett. 93, 143906 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • C.A. Müller
    • 1
  1. 1.Physikalisches InstitutUniversität BayreuthGermany

Personalised recommendations