Advertisement

Integrability pp 119-138 | Cite as

Four Lectures: Discretization and Integrability. Discrete Spectral Symmetries

  • S.P. Novikov
Part of the Lecture Notes in Physics book series (LNP, volume 767)

Keywords

Riemann Surface Landau Level Laplace Transformation Darboux Transformation Black Triangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.P. Novikov, Funct. Anal. Appl. 8(3), 54–66, 1974.Google Scholar
  2. 2.
    S.P. Novikov and A.P. Veselov, AMS Translations, Series 2, v 179; Solitons, Geometry and Topology: On the Crossroads, 109–133, 1997.Google Scholar
  3. 3.
    S.P. Novikov, I.A. Dynnikov, Russian Math Surveys., 52(5), 175–234, 1997.CrossRefMathSciNetGoogle Scholar
  4. 4.
    J. Weiss, J. Math. Phys. 27, 2647–2656, 1986.MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    A.B. Shabat and A.P. Veselov, Funct. Anal. Appl. 2, 1993.Google Scholar
  6. 6.
    V. Spiridonov, L. Vinet, and A. Zedanov, Lett. Math. Phys. 29, 63–73, 1993.MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    N.M. Atakishev and S.K. Suslov, Theor. Math. Phys. 85(1), 64–73, 1990.Google Scholar
  8. 8.
    C.S. Gardner, J. Green, M. Kruskal, and R. Miura, Phys. Rev. Lett. 19, 1095–1098, 1967.MATHCrossRefADSGoogle Scholar
  9. 9.
    P. Lax, Comm. Pure. Appl. Math. 21(5), 467–490, 1968.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    H. Flashka, Progr. Theor. Phys. 51, 703–716, 1974.CrossRefADSGoogle Scholar
  11. 11.
    S.V. Manakov, JETP, 67, 543–555, 1974.MathSciNetGoogle Scholar
  12. 12.
    J. Moser, Adv. Math. 16, 354, 1975.CrossRefADSGoogle Scholar
  13. 13.
    A.V. Mikhailov, JETP 30, 443–448, 1979.Google Scholar
  14. 14.
    B.A. Dubrovin, I.M. Krichever, and S.P. Novikov, Dynamical Systems 4–Completely Integrable Systems, Encyclopedia Math Sciences, Arnold V. and Novikov S. (eds.), second edition, Springer Verlag, vol. 4, 177–133, 2000.MathSciNetGoogle Scholar
  15. 15.
    B.A. Dubrovin, I.M. Krichever, and S.P. Novikov, Soviet Math Doklady 229, 15–18, 1976.Google Scholar
  16. 16.
    B.A. Dubrovin, V.B. Matveev, and S.P. Novikov, Russian Math Surveys 31(2), 55–136, 1976.MATHMathSciNetADSGoogle Scholar
  17. 17.
    A.I. Bobenko, Russian Math Surveys 46(4), 3–42, 1991.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    B.A. Dubrovin and S.P. Novikov, JETP 3, 1006–1016, 1980.MathSciNetGoogle Scholar
  19. 19.
    I.M. Krichever, Soviet Math. Doklady 285(1), 31–36, 1985.MathSciNetGoogle Scholar
  20. 20.
    I.M. Krichever and S.P. Novikov,Russian Math. Surveys 54(6), 149–150, 1999.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    S.V. Manakov, Russian Math. Surveys 31(5), 245–246, 1976.MATHMathSciNetGoogle Scholar
  22. 22.
    S.P. Novikov and A.P. Veselov, Soviet Math. Doklady 279(5), 1984.Google Scholar
  23. 23.
    S.P. Novikov, A.P. Veselov, and D. Fisica 18, 267–273, 1986.Google Scholar
  24. 24.
    L.O., Chekhov and N.P. Pusyrnikova, Russian Math. Surveys 55, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S.P. Novikov
    • 1
    • 2
  1. 1.University of MarylandCollege ParkUSA
  2. 2.L.D.Landau Institute for Theoretical PhysicsKosygina 2Russia

Personalised recommendations